MP1. Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining the meaning of a problem and looking for entry points to its solution.
\square They analyze givens, constraints, relationships, and goals.
\square They make conjectures about the form and meaning of the solution
T They plan a solution pathway rather than simply jumping into a solution attempt.
\square They consider similar problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution.
D. They monitor and evaluate their progress. And change course if necessary.
\square They check their answers to problems using a different method than the one they used to solve the problem.

- They continually ask, "Does this make sense?"
. They understand the approaches of others to solving complex problems
\square They identify similarities and differences between different approaches.

MP2. Reason abstractly and quantitatively

Mathematically proficient students make sense of the numbers (quantities) and relationships in problem situations
\square They represent abstract situations symbolically - decontextualize
\square The manipulate the representing symbols as if they have a life of their own, without attending to their referents
. They contextualize symbols, pausing to connect them to the situation in the problem
\square They create a coherent representation of the problem

They use the properties of the four operations flexibly

Questions Teachers	What do the numbers in this situation represent? Can Ask to Draw Out and Develop
What does this number represent? (referring to a number appearing a students' work)	
this MathematicalCan you make a drawing of the situation? Practice	What does it mean to multiply/divide/add/subtract? Can you represent the problem with symbols/ equations/ pictures/ sentences/ numbers?

MP3. Construct viable arguments and critique the reasoning of others.

Mathematically proficient students understand and use stated assumptions, definitions, and established results in constructing arguments.
\square They make conjectures \& build a logical progression of statements to explore the truth of their conjectures.
\square They can analyze situations by breaking them into cases, and can recognize and use counterexamples.

- They justify their conclusions, communicate them to others, and respond to the arguments of others.

They can compare the effectiveness of two arguments, and determine correct or flawed logic

Listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

MP4. Model with mathematics.

Mathematically proficient students can apply the mathematics they know to solve problems from everyday life, society, and the workplace.
T. They can simplify a complicated situation, realizing that they may need to revise later.
\square They can identify important quantities in a practical situation and show their relationships.
■ They can analyze those relationships mathematically to draw conclusions.
\square They routinely interpret their mathematical results in the context of the situation

They reflect on whether the result makes sense, possibly improving the model if it does not.

Questions Teachers Can Ask to Draw Out and Develop this Mathematical Practice
*It is important that students are working on problems that involve real-world situations
\square Write a number sentence(s) to describe this situation
. How could we draw a picture/make a diagram/visually represent this situation?
. What do you already know about solving this problem?

- What information would we need to answer this problem? Where could we get that information?
. How can you tell if the results make sense?
\square What factors of the situation did you choose to focus on? Explain your thinking.
\square What are the practical implications of your findings? Who might be able to use your findings? How might your findings be used by other people?

Example of a Problem Targeting this Mathematical Practice

Wikipedia reports that each day, 8% of all Americans eat at McDonald's. In 2012, there were about 310 million Americans and 12,800 McDonald's restaurants in the United States. Do you believe the Wikipedia report to be true? Create a mathematical argument to justify your position.

A Word on Mathematical Modelling

Modeling links classroom mathematics and statistics to everyday life, work, and decision-making. Modeling is the process of choosing and using appropriate mathematics and statistics to analyze empirical situations, to understand them better, and to improve decisions. Quantities and their relationships in physical, economic, public policy, social, and everyday situations can be modeled using mathematical and statistical methods. When making mathematical models, technology is valuable for varying assumptions, exploring consequences, and comparing predictions with data.
A model can be very simple, such as writing total cost as a product of unit price and number bought, or using a geometric shape to describe a physical object like a coin. Even such simple models involve making choices. It is up to us whether to model a coin as a three-dimensional cylinder, or whether a two-dimensional disk works well enough for our purposes. Other situations-modeling a delivery route, a production schedule, or a comparison of loan amortizations-need more elaborate models that use other tools from the mathematical sciences. Real-world situations are not organized and labeled for analysis; formulating tractable models, representing such models, and analyzing them is appropriately a creative process. Like every such process, this depends on acquired expertise as well as creativity.
(from The Math Assessment Project)
When we hear the word "modelling" in a classroom context, we often think about the teaching strategy where a teacher demonstrates a skill or an approach to a problem for students. When we talk about mathematical modelling, we are talking about something a little different.

To begin to think about mathematical modelling, let's look at two quotes by Henry Pollak

"When you use mathematics to understand a situation in the real world, and then perhaps use it to take action or even to predict the future, both the real-world situation and the ensuing mathematics are taken seriously."	"Mathematical modeling begins in the unedited real world, requires problem formulation before problem solving and once the problem is solved, moves back into the real world where the results are considered in their original context. Are the results practical, the answers reasonable, the consequences acceptable? If so, great! If not, take another look at the choices made at the beginning, and try again. This entire process is what's called mathematical modeling."

(quotes above are from EngageNY PowerPoint on Mathematical Modelling.) Now, consider the following problem, also from Henry Pollak:

Your grandmother will be arriving at the airport at 6:00 pm. You live 20 miles from the airport. The speed limit is 40 miles per hour. When should you leave to get her?

In a traditional math classroom the answer to this problem would be 5:30, since driving 20 miles at a speed of 40 MPH , will get you to the airport in a half hour.

But if you left your house at 5:30, you would most certainly be late to pick-up your grandmother. What are some other things you might factor in to your calculations?

What about traffic, stop lights, parking, time to meet your grandmother at the baggage claim to help her with her luggage, etc? This begins to get at what we mean by mathematical modelling.

MP5. Use appropriate tools strategically

Mathematically proficient students consider the available tools when solving a mathematical problem.
\square They make good decisions about the use of specific tools (calculator, concrete models, digital technology, paper/pencil, ruler, compass, protractor, etc.)
. They detect possible errors by strategically using estimation and other mathematical knowledge
. They use tools to visualize the results of assumptions, explore consequences and compare predictions with data

- They use technological tools to explore and deepen understanding of concepts
\square They identify relevant external math resources and use them to pose or solve problems

Questions Teachers Can Ask to Draw
Out and Develop this Mathematical Practice

- Can you draw a picture to show your thinking?
\square What would be the best tools for working on this problem? (Or offering students a selection of tools and asking them to choose one and then later to explain and reflect on their choice)
\square What mathematical tool(s) could you use to visualize/represent this situation?
\square How did it help us to use a \qquad ?

MP6. Attend to precision.	
Mathematically proficient students try to communicate precisely to others. . They try to use clear definitions when discussing their reasoning with others They express the meaning of the symbols they choose, including using the equal sign consistently and appropriately. . They are careful about specifying units of measure, and labeling quantities in a problem. T. They calculate accurately and efficiently. \square They express numerical answers with a degree of precision appropriate for the problem context.	
Questions Teachers Can Ask to Draw Out and Develop this Mathematical Practice	(What does the word \qquad mean? \square Explain what you did to solve this problem. \square How could you label your work to make it clearer? \square Is there a more efficient strategy? . How could you organize your work to make it clearer? . How do you know your answer is reasonable? . How exact does your answer need to be? Explain your thinking. \square What symbols or mathematical notations are important in this problem? - <Student's name> just explained their strategy to us. What was clear about their strategy? What questions do you have for <Student's name>?

MP7. Look for and make use of structure	
Mathematically proficient students look clos . They recognize quantities can be rep \square They can shift back, look at the big p \square They can see complicated quantities objects and use operations to make sens	for patterns or structure. nted in different ways re and shift perspective as single objects or compositions of several of problems
Questions Teachers Can Ask to Draw Out and Develop this Mathematical Practice	*Moving from general to specific \square How is \qquad related to \qquad ? \square Is there another way to look at this problem? - What do you know about \qquad that would be helpful in this situation? $\boxed{\square}$ What patterns do you notice? How can we use that pattern? \square How do you know if something is a pattern? ■ What problems have we done that are similar to this one? How are they similar? - What mathematical concepts/strategies have we learned that helped you work on this problem?

MP8. Look for and express regularity in repeated reasoning

Mathematically proficient students notice repeated calculations and look for general methods and shortcuts
\square While working on a problem, mathematically proficient students maintain oversight of the process, while attending to the details.
\square They continually evaluate the reasonableness of intermediate results
\square They make generalizations based on findings

Questions Teachers Can Ask to Draw
Out and Develop this Mathematical Practice

(Making generalizations) Can you come up with a rule that will help us solve the problem whatever the numbers are?
\square Will the same strategy work in other situations?
\square Now that you have the answer, go back and see if there are any patterns you notice.
\square How can working on this problem help us solve another problem?
$\boxed{\square}$ Is there another way to solve this problem using less calculation?

