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Developing Essential  Understanding

How do you refute the claim that all ratios are fractions? How are ratios related to 
fractions? How does ratio reasoning differ from other types of reasoning? When it 
is appropriate to reason proportionally?

How much do you know … and how much do you need to know? 

Helping your middle school students develop a robust understanding of ratios, 
proportions, and proportional reasoning requires that you understand this mathe-
matics deeply. But what does that mean?

This book focuses on essential knowledge for teachers about ratios, proportions, 
and proportional reasoning. It is organized around one big idea, supported by 
multiple smaller, interconnected ideas—essential understandings. Taking you 
beyond a simple introduction to ratios, proportions, and proportional reasoning, the 
book will broaden and deepen your mathematical understanding of one of the most 
challenging topics for students—and teachers. It will help you engage your students, 
anticipate their perplexities, avoid pitfalls, and dispel misconceptions. You will also 
learn to develop appropriate tasks, techniques, and tools for assessing students’ 
understanding of the topic. 

Focus on the ideas that you need to understand thoroughly to teach confidently.

Move beyond the mathematics you expect your students to 
learn. Students who fail to get a solid grounding in pivotal 
concepts struggle in subsequent work in mathematics and related 
disciplines. By bringing a deeper understanding to your teaching, you can help 
students who don’t get it the first time by presenting the mathematics in multiple ways.

The Essential Understanding Series addresses topics in school mathematics that are 
critical to the mathematical development of students but are often difficult to teach. 
Each book in the series gives an overview of the topic, highlights the differences between 
what teachers and students need to know, examines the big ideas and related essential 
understandings, reconsiders the ideas presented in light of connections with other 
mathematical ideas, and includes questions for readers’ reflection.
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Foreword
Teaching mathematics in prekindergarten–grade 12 requires a spe-
cial understanding of mathematics. Effective teachers of mathemat-
ics think about and beyond the content that they teach, seeking 
explanations and making connections to other topics, both inside 
and outside mathematics. Students meet curriculum and achieve-
ment expectations when they work with teachers who know what 
mathematics is important for each topic that they teach.

The National Council of Teachers of Mathematics (NCTM) pres-
ents the Essential Understanding Series in tandem with a call to 
focus the school mathematics curriculum in the spirit of Curriculum 
Focal Points for Prekindergarten through Grade 8 Mathematics: A 
Quest for Coherence, published in 2006, and Focus in High School 
Mathematics: Reasoning and Sense Making, released in 2009. 
The Essential Understanding books are a resource for individual 
teachers and groups of colleagues interested in engaging in math-
ematical thinking to enrich and extend their own knowledge of 
particular mathematics topics in ways that benefit their work with 
students. The topic of each book is an area of mathematics that is 
difficult for students to learn, challenging to teach, and critical for 
students’ success as learners and in their future lives and careers.

Drawing on their experiences as teachers, researchers, and 
mathematicians, the authors have identified the big ideas that are 
at the heart of each book’s topic. A set of essential understandings—
mathematical points that capture the essence of the topic—fleshes 
out each big idea. Taken collectively, the big ideas and essential 
understandings give a view of a mathematics that is focused, con-
nected, and useful to teachers. Links to topics that students encoun-
ter earlier and later in school mathematics and to instruction and 
assessment practices illustrate the relevance and importance of a 
teacher’s essential understanding of mathematics.

On behalf of the Board of Directors, I offer sincere thanks and 
appreciation to everyone who has helped to make this series pos-
sible. I extend special thanks to Rose Mary Zbiek for her leadership 
as series editor. I join the Essential Understanding project team in 
welcoming you to these books and in wishing you many years of 
continued enjoyment of learning and teaching mathematics.

Henry Kepner
President, 2008–2010

National Council of Teachers of Mathematics
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Preface
From prekindergarten through grade 12, the school mathematics 
curriculum includes important topics that are pivotal in students’ 
development. Students who understand these ideas cross smoothly 
into new mathematical terrain and continue moving forward with 
assurance.

However, many of these topics have traditionally been chal-
lenging to teach as well as learn, and they often prove to be barriers 
rather than gateways to students’ progress. Students who fail to get 
a solid grounding in them frequently lose momentum and struggle 
in subsequent work in mathematics and related disciplines. 

The Essential Understanding Series identifies such topics at all 
levels. Teachers who engage students in these topics play critical 
roles in students’ mathematical achievement. Each volume in the 
series invites teachers who aim to be not just proficient but out-
standing in the classroom—teachers like you—to enrich their under-
standing of one or more of these topics to ensure students’ contin-
ued development in mathematics. 

How much do you need to know?
To teach these challenging topics effectively, you must draw on a 
mathematical understanding that is both broad and deep. The chal-
lenge is to know considerably more about the topic than you expect 
your students to know and learn. 

Why does your knowledge need to be so extensive? Why must 
it go above and beyond what you need to teach and your students 
need to learn? The answer to this question has many parts. 

To plan successful learning experiences, you need to under-
stand different models and representations and, in some cases, 
emerging technologies as you evaluate curriculum materials and 
create lessons. As you choose and implement learning tasks, you 
need to know what to emphasize and why those ideas are math-
ematically important.

While engaging your students in lessons, you must anticipate 
their perplexities, help them avoid known pitfalls, and recognize 
and dispel misconceptions. You need to capitalize on unexpected 
classroom opportunities to make connections among mathematical 
ideas. If assessment shows that students have not understood the 
material adequately, you need to know how to address weaknesses 
that you have identified in their understanding. Your understanding 
must be sufficiently versatile to allow you to represent the math-
ematics in different ways to students who don’t understand it the 
first time. In addition, you need to know where the topic fits in the 
full span of the mathematics curriculum. You must understand where 
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your students are coming from in their thinking and where they are 
heading mathematically in the months and years to come.

Accomplishing these tasks in mathematically sound ways is 
a tall order. A rich understanding of the mathematics supports the 
varied work of teaching as you guide your students and keep their 
learning on track. 

How can the Essential Understanding Series help?
The Essential Understanding books offer you an opportunity to 
delve into the mathematics that you teach and reinforce your con-
tent knowledge. They do not include materials for you to use direct-
ly with your students, nor do they discuss classroom management, 
teaching styles, or assessment techniques. Instead, these books focus 
squarely on issues of mathematical content—the ideas and under-
standing that you must bring to your preparation, in-class instruc-
tion, one-on-one interactions with students, and assessment.

How do the authors approach the topics?
For each topic, the authors identify “big ideas” and “essential un-
derstandings.” The big ideas are mathematical statements of over-
arching concepts that are central to a mathematical topic and link 
numerous smaller mathematical ideas into coherent wholes. The 
books call the smaller, more concrete ideas that are associated with 
each big idea essential understandings. They capture aspects of the 
corresponding big idea and provide evidence of its richness.

The big ideas have tremendous value in mathematics. You 
can gain an appreciation of the power and worth of these densely 
packed statements through persistent work with the interrelated es-
sential understandings. Grasping these multiple smaller concepts 
and through them gaining access to the big ideas can greatly in-
crease your intellectual assets and classroom possibilities.

In your work with mathematical ideas in your role as a teacher, 
you have probably observed that the essential understandings are 
often at the heart of the understanding that you need for present-
ing one of these challenging topics to students. Knowing these ideas 
very well is critical because they are the mathematical pieces that 
connect to form each big idea.

How are the books organized? 
Every book in the Essential Understanding Series has the same 
structure:

•  The introduction gives an overview, explaining the reasons 
for the selection of the particular topic and highlighting some 
of the differences between what teachers and students need 
to know about it.

•  Chapter 1 is the heart of the book, identifying and examining 
the big ideas and related essential understandings.

Big ideas and 
essential 

understandings are 
identified by 

icons in the books.

marks an essential
understanding.

marks a big idea, 

and

deai
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•  Chapter 2 reconsiders the ideas discussed in chapter 1 in 
light of their connections with mathematical ideas within the 
grade band and with other mathematics that students have 
encountered earlier or will encounter later in their study of 
mathematics.

•   Chapter 3 wraps up the discussion by considering the chal-
lenges that students often face in grasping the necessary 
concepts related to the topic under discussion. It analyzes 
the development of their thinking and offers guidance for 
presenting ideas to them and assessing their understanding.

The discussion of big ideas and essential understandings in 
chapter 1 is interspersed with questions labeled “Reflect.” It is im-
portant to pause in your reading to think about these on your own 
or discuss them with your colleagues. By engaging with the material 
in this way, you can make the experience of reading the book par-
ticipatory, interactive, and dynamic.

Reflect questions can also serve as topics of conversation 
among local groups of teachers or teachers connected electronically 
in school districts or even between states. Thus, the Reflect items 
can extend the possibilities for using the books as tools for formal 
or informal experiences for in-service and preservice teachers, indi-
vidually or in groups, in or beyond college or university classes.

A new perspective
The Essential Understanding Series thus is intended to support you 
in gaining a deep and broad understanding of mathematics that 
can benefit your students in many ways. Considering connections 
between the mathematics under discussion and other mathematics 
that students encounter earlier and later in the curriculum gives the 
books unusual depth as well as insight into vertical articulation in 
school mathematics.

The series appears against the backdrop of Principles and 
Standards for School Mathematics (NCTM 2000), Curriculum Focal 
Points for Prekindergarten through Grade 8 Mathematics: A Quest 
for Coherence (NCTM 2006), Focus in High School Mathematics: 
Reasoning and Sense Making (NCTM 2009), and the Navigations 
Series (NCTM 2001–2009). The new books play an important role, 
supporting the work of these publications by offering content-based 
professional development. 

The other publications, in turn, can flesh out and enrich the 
new books. After reading this book, for example, you might select 
hands-on, Standards-based activities from the Navigations books 
for your students to use to gain insights into the topics that the 
Essential Understanding books discuss. If you are teaching students 
in prekindergarten through grade 8, you might apply your deeper 
understanding as you present material related to the three focal 
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points that Curriculum Focal Points identifies for instruction at your 
students’ level. Or if you are teaching students in grades 9–12, you 
might use your understanding to enrich the ways in which you can 
engage students in mathematical reasoning and sense making as 
presented in Focus in High School Mathematics.

An enriched understanding can give you a fresh perspective 
and infuse new energy into your teaching. We hope that the under-
standing that you acquire from reading the book will support your 
efforts as you help your students grasp the ideas that will ensure 
their mathematical success.

The authors of the present volume would like to thank the 
following individuals who reviewed an earlier version of the book: 
Steven Benson, Rick Billstein, Glenda Lappan, and Barbara Zorin. 
Their careful reading and willingness to share their reactions were 
greatly appreciated.

Preface
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Introduction
This book focuses on ideas about ratios, proportions, and propor-
tional reasoning. These are ideas that you need to understand thor-
oughly and be able to use flexibly to be highly effective in your 
teaching of mathematics in grades 6–8. The book discusses many 
mathematical ideas that are common in middle school curricula, 
and it assumes that you have had a variety of mathematics experi-
ences that have motivated you to delve into—and move beyond—the 
mathematics that you expect your students to learn. 

The book is designed to engage you with these ideas, helping 
you to develop an understanding that will guide you in planning 
and implementing lessons and assessing your students’ learning 
in ways that reflect the full complexity of ratios and proportional 
relationships. A deep, rich understanding of these relationships 
will enable you to communicate their influence and scope to your 
students, showing them how these ideas permeate the mathemat-
ics that they have encountered—and will continue to encounter—
throughout their school mathematics experiences. 

The understanding of ratios, proportions, and proportional 
reasoning that you gain from this focused study thus supports the 
vision of Principles and Standards for School Mathematics (NCTM 
2000): “Imagine a classroom, a school, or a school district where 
all students have access to high-quality, engaging mathematics 
instruction” (p. 3). This vision depends on classroom teachers who 
“are continually growing as professionals” (p. 3) and routinely en-
gage their students in meaningful experiences that help them learn 
mathematics with understanding. 

Why Ratios, Proportions, and  
Proportional Reasoning?
Like the topics of all the volumes in NCTM’s Essential 
Understanding Series, ratios, proportions, and proportional reason-
ing compose a major area of school mathematics that is crucial for 
students to learn but challenging for teachers to teach. Students 
in grades 6–8 need to understand proportionality well if they are 
to succeed in these grades and in their subsequent mathematics 
experiences. Learners often struggle with ideas about ratio and pro-
portion. What is the relationship between ratios and fractions, for 
example? Many students mistakenly believe that they are identical. 
The importance of ratios, proportions, and proportional reasoning 
and the challenge of understanding them well make them essential 
for teachers of mathematics in grades 6–8 to understand extremely 
well themselves.



2 Ratios, Proportions, and Proportional Reasoning

Your work as a middle school teacher of mathematics calls 
for a solid understanding of the mathematics that you—and your 
school, your district, and your state curriculum—expect your stu-
dents to learn about ratios, proportions, and proportional reasoning. 
Your work also requires you to know how this mathematics relates 
to other mathematical ideas that your students will encounter in 
the lesson at hand, the current school year, and beyond. Rich math-
ematical understanding guides teachers’ decisions in much of their 
work, such as choosing tasks for a lesson, posing questions, select-
ing materials, ordering topics and ideas over time, assessing the 
quality of students’ work, and devising ways to challenge and sup-
port their thinking. 

Understanding Ratios, Proportions, 
and Proportional Reasoning
Teachers teach mathematics because they want others to under-
stand it in ways that will contribute to success and satisfaction in 
school, work, and life. Helping your middle school students develop 
a robust and lasting understanding of ratios, proportions, and pro-
portional reasoning requires that you understand this mathematics 
deeply. But what does this mean?

It is easy to think that understanding an area of mathemat-
ics, such as ratios and proportions, means knowing certain facts, 
being able to solve particular types of problems, and mastering 
relevant vocabulary. For example, for the middle school level, you 
are expected to know such facts as “a ratio can be written in differ-
ent ways.” You are expected to be skillful in solving problems that 
involve such activities as setting up and solving a proportion. Your 
mathematical vocabulary is assumed to include such terms as ratio, 
proportion, proportionality, and rate.

Obviously, facts, vocabulary, and techniques for solving certain 
types of problems are not all that you are expected to know about 
ratios, proportions, and proportional reasoning. In your ongoing 
work with students, you have undoubtedly discovered that you need 
to distinguish among different types of problems and know when 
particular strategies apply. For example, you must know the differ-
ence between relationships that are proportional and relationships 
that are not proportional. For proportional relationships, you need 
to understand what it means for ratios to be equivalent and differ-
ent ways of generating equivalent ratios.

It is also easy to focus on a very long list of mathematical 
ideas that all teachers of mathematics in grades 6–8 are expected 
to know and teach about ratios and proportions. Curriculum devel-
opers often devise and publish such lists. However important the 
individual items might be, these lists cannot capture the essence of 
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a rich understanding of the topic. Understanding this area deeply 
requires you not only to know important mathematical ideas but 
also to recognize how these ideas relate to one another. Your under-
standing continues to grow with experience and as a result of op-
portunities to embrace new ideas and find new connections among 
familiar ones. 

Furthermore, your understanding of ratios, proportions, and 
proportional reasoning should transcend the content intended for 
your students. Some of the differences between what you need to 
know and what you expect them to learn are easy to point out. For 
instance, your understanding of the topic should include a grasp of 
the way in which ratios and proportions connect with linear func-
tions—mathematics that students will encounter later but do not yet 
understand.

Other differences between the understanding that you need to 
have and the understanding that you expect your students to ac-
quire are less obvious, but your experiences in the classroom have 
undoubtedly made you aware of them at some level. For example, 
how many times have you been grateful to have an understand-
ing of ratios, proportions, and proportional reasoning that enables 
you to recognize the merit in a student’s unanticipated mathemati-
cal question or claim? How many other times have you wondered 
whether you could be missing such an opportunity or failing to use 
it to full advantage because of a gap in your knowledge?

As you have almost certainly discovered, knowing and being 
able to do familiar mathematics are not enough when you’re in the 
classroom. You also need to be able to identify and justify or refute 
novel claims. These claims and justifications might draw on ideas 
or techniques that are beyond the mathematical experiences of your 
students and current curricular expectations for them. For example, 
you need to be able to refute the often-asserted, erroneous claim 
that all ratios are fractions. At the same time, you should be able to 
illustrate conceptual relationships between fractions and ratios, as 
well as use fractional notation to express ratios.

Big Ideas and Essential Understandings
Thinking about the many particular ideas that are part of a rich un-
derstanding of ratios, proportions, and proportional reasoning can 
be an overwhelming task. Articulating all of those mathematical 
ideas and their connections would require many books. To choose 
which ideas to include in this book, the authors considered a critical 
question: What is essential for teachers of mathematics  
in grades 6–8 to know about ratios, proportions, and proportional 
reasoning to be effective in the classroom? To answer this question, 
the authors drew on a variety of resources, including personal  
experiences, the expertise of colleagues in mathematics and  
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mathematics education, and the reactions of reviewers and profes-
sional development providers, as well as ideas from curricular mate-
rials and research on mathematics learning and teaching.

As a result, the mathematical content of this book focuses on 
essential knowledge for teachers about ratios, proportions, and pro-
portional reasoning. In particular, chapter 1 is organized around one 
big idea related to this important area of mathematics. This big idea 
is supported by smaller, more specific mathematical ideas, which the 
book calls essential understandings. This book focuses on ten inter-
connected essential understandings that are related to the big idea. 
These ideas elaborate what you need to know for an understand-
ing of ratios, proportions, and proportional reasoning. Gaining this 
understanding is an extremely valuable and useful accomplishment 
because ratios and proportions offer ways to think quantitatively 
about real-world phenomena.

Benefits for Teaching, Learning,  
and Assessing
An understanding of ratios, proportions, and proportional reason-
ing can help you implement the Teaching Principle enunciated in 
Principles and Standards for School Mathematics. This Principle 
sets a high standard for instruction: “Effective mathematics teach-
ing requires understanding what students know and need to learn 
and then challenging and supporting them to learn it well” (NCTM 
2000, p. 16). As in teaching about other critical topics in mathemat-
ics, teaching about ratios, proportions, and proportional reasoning 
requires knowledge that goes “beyond what most teachers experi-
ence in standard preservice mathematics courses” (p. 17). 

Chapter 1 comes into play at this point, offering an overview 
of proportionality that is intended to be more focused and compre-
hensive than many discussions of the topic that you are likely to 
have encountered. This chapter enumerates, expands on, and gives 
examples of the big idea and essential understandings related to 
ratios, proportions, and proportional reasoning, with the goal of 
supplementing or reinforcing your understanding. Thus, chapter 1 
aims to prepare you to implement the Teaching Principle fully as 
you provide the support and challenge that your students need for 
robust learning about proportionality. 

Consolidating your understanding in this way also prepares 
you to implement the Learning Principle outlined in Principles and 
Standards: “Students must learn mathematics with understanding, 
actively building new knowledge from experience and prior knowl-
edge” (NCTM 2000, p. 20). To support your efforts to help your 
students learn about ratios, proportions, and proportional reasoning 
in this way, chapter 2 builds on the understanding of the topic that 
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chapter 1 communicates by pointing out specific ways in which 
the big idea and essential understandings connect with mathemat-
ics that students typically encounter earlier or later in school. This 
chapter supports the Learning Principle by emphasizing longitudi-
nal connections in students’ learning about proportionality. 

For example, as their mathematical experiences expand, stu-
dents gradually develop an understanding of the connections be-
tween proportionality and relationships that they can represent by 
equations of the form y = ax, together with an understanding of the 
connections between proportionality and relationships that they can 
represent by equations of the form y = ax + b.

The understanding that chapters 1 and 2 convey can strength-
en another critical area of teaching. Chapter 3 addresses this area, 
building on the first two chapters to show how an understanding 
of ratios, proportions, and proportional reasoning can help you 
select and develop appropriate tasks, techniques, and tools for as-
sessing your students’ understanding of the topic. An ownership of 
the big idea and essential understandings related to proportionality, 
reinforced by an awareness of students’ past and future experiences 
with the ideas, can help you ensure that assessment in your class-
room supports the learning of significant mathematics. 

Such assessment satisfies the first requirement of the 
Assessment Principle set out in Principles and Standards (NCTM 
2000): “Assessment should support the learning of important 
mathematics and furnish useful information to both teachers 
and students” (p. 22). An understanding of ratios, proportions, 
and proportional reasoning can also help you satisfy the second 
requirement of the Assessment Principle, by enabling you to de-
velop assessment tasks that give you specific information about 
what your students are thinking and what they understand. For 
instance, consider comparison problems and transformation prob-
lems. Comparison problems typically show students two ratios 
and ask them to determine whether the first ratio is greater than, 
less than, or equal to the second. Transformation problems give 
a ratio or two equivalent ratios and ask students either to change 
one or more quantities to change the ratio relationship or to de-
termine how a given change in one or more quantities changes 
the relationship. Using a combination of these (and other) types of 
problems can give you insights about the range of strategies that 
students have developed and the ways in which they reason about 
quantities and relationships.

Ready to Begin
This introduction has painted the background, preparing you for  
the big idea and associated essential understandings related to 
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proportionality that you will encounter and explore in chapter 1. 
Reading the chapters in the order in which they appear can be a 
very useful way to approach the book. Read chapter 1 in more than 
one sitting, allowing time for reflection. Absorb the ideas—both the 
big idea and the essential understandings—that contribute to an 
understanding of ratios, proportions, and proportional reasoning. 
Appreciate the connections among these ideas. Carry your new-
found or reinforced understanding to chapter 2, which guides you in 
seeing how the ideas related to ratios, proportions, and proportional 
reasoning are connected to the mathematics that your students have 
encountered earlier or will encounter later in school. Then read 
about teaching, learning, and assessment issues in chapter 3.

Alternatively, you may want to take a look at chapter 3 before 
engaging with the mathematical ideas in chapters 1 and 2. Having 
the challenges of teaching, learning, and assessment issues clearly 
in mind, along with possible approaches to them, can give you a 
different perspective on the material in the earlier chapters. 

No matter how you read the book, let it serve as a tool to  
expand your understanding, application, and enjoyment of ratios, 
proportions, and proportional reasoning. 



Ratios, Proportions, and 
Proportional Reasoning: 
The Big Idea and Essential 
Understandings

A TYPICAL instructional unit or chapter on ratio and proportion
 shows students different ways to write ratios and then intro-

duces a proportion as two equivalent ratios. Next, students usually 
encounter the cross-multiplication algorithm as a technique for 
solving a proportion. Does this customary development of ratio and 
proportion promote a deep understanding of these ideas? Consider 
an interview with a student named Bonita to think about what it 
means to reason proportionally.

Bonita was given a problem about a leaky faucet through 
which 6 ounces of water dripped in 8 minutes. She needed to figure 
out how much water dripped in 4 minutes. Bonita set up a propor-
tion and used cross multiplication, as shown in figure 1.1, to arrive 
at a correct response of 3 ounces. Reflect 1.1 invites you to think 
about Bonita’s work on the problem.

Fig. 1.1. Bonita’s work on a proportion problem

1 

7

Chapter



8 Ratios, Proportions, and Proportional Reasoning

Bonita’s work offers much to like. It is well organized. Bonita la-
beled the quantities of time and water in her proportion and correctly 
carried out the cross-multiplication procedure. However, Bonita’s 
responses to three additional tasks suggest that she might not have 
understood important ideas related to proportional reasoning.

A second task called on Bonita to find the number of ounces 
that would drip through the same faucet in 40 minutes. To deter-
mine whether or not Bonita was procedurally bound to the cross-
multiplication method, the interviewer asked her to solve the prob-
lem mentally or to use paper and pencil but without applying the 
algorithm. Bonita was at a loss. She said she couldn’t do the prob-
lem in her head, and she was unable to do it on paper either. Even 
after the interviewer changed the specified time from 40 minutes 
to 16 minutes, Bonita was apparently unable to perform the simple 
act of doubling mentally or was unaware that doubling would be a 
reasonable approach.

A third task asked Bonita to solve a problem not posed in the 
typical form of three numbers given and one missing: 

Crystal placed a bucket under a faucet and collected 6 ounces of 
water in 20 minutes. Joanne placed a bucket under a second faucet 
and collected 3 ounces of water in 10 minutes. Were the faucets 
dripping equally fast or was one dripping faster than the other?

From what you have read so far about Bonita’s reasoning, would 
you expect Bonita to come up with a way to solve this  
problem? Reflect 1.2 asks you to speculate about Bonita’s thinking.

Reflect 1.2  

How do you think Bonita approached the third task set for her by the  
interviewer? Do you think she was able to reason about it proportionally?  
Why or why not?

Bonita presented two solutions. First, she said that Crystal’s 
faucet was dripping more slowly than Joanne’s because “it took 
its time.” This response suggests that Bonita compared only the 
amounts of time. Because 20 minutes is greater than 10 minutes, 
Bonita reasoned that the faucet taking more time was dripping more 

Reflect 1.1

Do you think Bonita’s work in figure 1.1 shows that she was reasoning  
proportionally? If so, why do you think so? If not, what do you think she may 
not have understood?
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slowly than the faucet taking less time. Then Bonita changed her 
mind and said that Crystal’s faucet was dripping faster because both 
amounts—time and water—for Crystal’s faucet were greater than the 
corresponding amounts for Joanne’s faucet (i.e., 20 > 10, and 6 > 3). 

Bonita’s response indicates that she did not form a ratio be-
tween the amount of water and the amount of time. In her first 
solution, she considered only one quantity—elapsed time. In her 
second attempt, she applied whole-number reasoning to two discon-
nected pairs of numbers. Bonita’s response illustrates the difficulty 
that many middle school students experience in conceiving that 
something may remain the same while the values of the two quanti-
ties change.

The fourth and final task presented Bonita with the data shown 
in figure 1.2. She was told that another girl, Cassandra, had col-
lected the data to see how fast her bathtub faucet was leaking. 
Cassandra had put a large container under the faucet in the morning 
and then had checked periodically throughout the day to see how 
much water was in the container. The interviewer constructed 
the table with uneven time intervals to approximate actual data 
collection but provided numbers that readily permitted mental 
calculations.

Time Amount of Water

7:00 a.m. 2 ounces

8:15 a.m. 12 ounces

9:45 a.m. 24 ounces

2:30 p.m. 62 ounces

5:15 p.m. 84 ounces

6:00 p.m. 90 ounces

9:30 p.m. 118 ounces

Fig. 1.2. Data collected from a dripping bathtub faucet 

To help Bonita comprehend the situation before encountering 
any difficult questions, the interviewer asked her how much water 
dripped between 7 a.m. and 8:15 a.m. Although this question re-
quired only simple subtraction (12 – 2 = 10), Bonita inappropriately 
set up a proportion and attempted to solve for x, as shown in figure 
1.3. This work strongly suggests that Bonita did not understand 
when it is appropriate to compare numbers by forming a ratio. In 
sum, although Bonita could correctly execute the proportion algo-
rithm on the first task, her work on the next three tasks demon-
strates her poor conceptual understanding.
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Fig. 1.3. Bonita’s work on the bathtub task

If Bonita had understood the ideas behind her work, then 
she should have been able to reason about the faucet that drips 6 
ounces of water in 8 minutes by using at least one of the two 
following methods. 

Proportional Reasoning Method 1
Bonita might have used the method described below to reason about 
the faucet that dripped 6 ounces in 8 minutes: 

•  Form a ratio by joining 6 ounces and 8 minutes into a single 
unit: 6 ounces in 8 minutes.

•  Iterate (repeat) this unit by reasoning that if the faucet drips 
another 6 ounces in 8 minutes, it does not speed up or slow 
down since the amounts of time and water are identical. 
Thus, a faucet that drips 12 ounces in 16 minutes drips at the 
same rate as one that drips 6 ounces in 8 minutes.

•  Similarly, partition, or split, the “6 ounces in 8 minutes” unit 
in half. A faucet that drips 3 ounces in 4 minutes drips at the 
same rate as one that drips 6 ounces in 8 minutes.

•  Make more challenging partitions. To determine the amount 
of water that drips in 1 minute, split the unit into eighths 
by finding 1/8 of 6 ounces, which is 6/8 , or 3/4 , ounce, and by 
finding 1/8 of 8 minutes, which is 1 minute. Thus, a faucet 
that drips 3/4 ounce in 1 minute drips at the same rate as one 4 ounce in 1 minute drips at the same rate as one 4
that drips 6 ounces in 8 minutes. 

•  Combine the actions of iterating and partitioning. For ex-
ample, quadruple the “6 ounces in 8 minutes” unit to obtain 
24 ounces in 32 minutes. Also partition the “6 ounces in 8 
minutes” unit into thirds by finding 1/3  of 6 ounces, which 
is 2 ounces, and by finding 1/3 of 8 minutes, which is 8/3, or  
2 2/3  minutes. Combine these results to obtain 26 ounces 
in 34 2/3  minutes, which is 41/3  times the “6 ounces in 8 
minutes” unit. 

In this manner, construct a large collection of ratios, all of 
which represent the same dripping rate: 6 ounces in 8 minutes, 
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12 ounces in 16 minutes, 3 ounces in 4 minutes, 3/4  ounce in 1 
minute, 26 ounces in 342/3  minutes, and so on. 

Proportional Reasoning Method 2
Alternatively, Bonita might have reasoned about the faucet dripping 
6 ounces of water in 8 minutes by using the following method:

•  Compare the two numerical values 6 and 8 (from 6 ounces 
in 8 minutes) by finding how many times greater 8 is than 6. 
Eight is 11/3 times greater than 6. 

•  To determine the amount of time that it takes for any amount 
of water to drip, multiply the value of the water amount by 
11/3. For example, for 3 ounces of water, it will take 3 3 11/3, 
or 4, minutes. For 12 ounces, it will take 12 3 11/3, or 16, 
minutes. 

•  Construct a collection of ratios by maintaining the factor of 
11/3. That is, the water amount is always 1 1/3 times greater 
than the time amount.

•  Also compare the values 6 and 8 by finding what fraction 6 
is of 8. Six is 6/8 , or 3/4 , of 8. 

•  To determine the amount of water that drips for any amount 
of time, multiply the time amount by 3/4 . For example, in 16 
minutes, 16 3 3/4 , or 12, ounces, of water will drip. In 4 min-
utes, 4 3 3/4 , or 3, ounces of water will drip.

One Big Idea and Multiple 
Essential Understandings 
The two methods that Bonita could have used to reason proportion-
ally about the faucet dripping 6 ounces in 8 minutes suggest the 
following big idea related to ratios, proportions, and proportional 
reasoning: When two quantities are related proportionally, the ratio 
of one quantity to the other is invariant as the numerical values of 
both quantities change by the same factor.  

In the situation of the dripping faucet, the water and time val-
ues change; yet, infinitely many water and time pairs represent the 
same dripping rate (e.g., 6 ounces in 8 minutes, 9 ounces in 12 min-
utes, 3 ounces in 4 minutes, 3/4 ounce in 1 minute). Any pair in the 4 ounce in 1 minute). Any pair in the 4
collection of water and time pairs can be obtained by iterating and/
or partitioning any other pair. For example, 9 ounces in 12 minutes 
is 11/2 groups of 6 ounces in 8 minutes and is equal to 3 groups of 3 
ounces in 4 minutes. Furthermore, the ratio of time to water in each 
pair is constant: the number of minutes is 11/3 times the number of 

When two 
quantities 
are related 
propor-

tionally, the ratio of 
one quantity to the 
other is 
invariant as the 
numerical values 
of both quantities 
change by the same 
factor.

deai
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ounces. The ratio of water to time is also constant: the number of 
ounces is 3/4 the number of minutes.

Although the big idea of proportionality may at first seem 
straightforward, developing an understanding of it is a com-
plex process for students. It involves grasping many essential 
understandings: 

Essential Understanding 1. Reasoning with ratios involves attending 
to and coordinating two quantities.

Essential Understanding 2. A ratio is a multiplicative comparison of 
two quantities, or it is a joining of two quantities in a composed unit.

Essential Understanding 3. Forming a ratio as a measure of a real-
world attribute involves isolating that attribute from other attributes 
and understanding the effect of changing each quantity on the attri-
bute of interest.

Essential Understanding 4. A number of mathematical connections 
link ratios and fractions:

•  Ratios are often expressed in fraction notation, although  
ratios and fractions do not have identical meaning. 

•  Ratios are often used to make “part-part” comparisons,  
but fractions are not.

•  Ratios and fractions can be thought of as overlapping sets.

•  Ratios can often be meaningfully reinterpreted as fractions.

Essential Understanding 5. Ratios can be meaningfully reinterpreted 
as quotients.

Essential Understanding 6. A proportion is a relationship of equality 
between two ratios. In a proportion, the ratio of two quantities re-
mains constant as the corresponding values of the quantities change.

Essential Understanding 7. Proportional reasoning is complex and in-
volves understanding that—

•  Equivalent ratios can be created by iterating and/or parti-
tioning a composed unit; 

•  If one quantity in a ratio is multiplied or divided by a par-
ticular factor, then the other quantity must be multiplied or 
divided by the same factor to maintain the proportional  
relationship; and

•  The two types of ratios—composed units and multiplicative 
comparisons—are related.
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Essential Understanding 8. A rate is a set of infinitely many equiva-
lent ratios.

Essential Understanding 9. Several ways of reasoning, all grounded 
in sense making, can be generalized into algorithms for solving pro-
portion problems. 

Essential Understanding 10. Superficial cues present in the context 
of a problem do not provide sufficient evidence of proportional re-
lationships between quantities.

The purpose of this chapter is to elaborate and develop these 
essential understandings, which were implicit in the discussion of 
Bonita’s work. The discussion moves from ratios to proportions 
(pairs of equivalent ratios) and finally to proportional reasoning 
(which involves generating an entire set of equivalent ratios). The 
chart in figure 1.4 illustrates the flow of ideas. Notice that each  
essential understanding provides a response to a different question. 
However, the chart is not meant to show the order in which all  
students develop these ideas.

The initial cluster of essential understandings deals with ratios, 
because ratios are a building block for the formation of proportions 
and proportional reasoning. The first essential understanding  
addresses how ratio reasoning differs from non-ratio reasoning.
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Essential  
Understanding Question Topic

1
How does ratio reasoning differ 
from other types of reasoning? 

Ratios

2 What is a ratio? 

3

What is a ratio as a measure 
of an attribute in a real-world 
situation? 

4
How are ratios related  
to fractions? 

5
How are ratios related  
to division?

6 What is a proportion? Proportions

7
What are the key aspects of 
proportional reasoning? 

Proportional

Reasoning

8

What is a rate and how is 
it related to proportional 
reasoning? 

9

What is the relationship 
between the cross-
multiplication algorithm and 
proportional reasoning? 

10
When is it appropriate to  
reason proportionally? 

Fig. 1.4. Organization of the essential understandings  
developed in chapter 1 
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Essential Understanding 1

Reasoning with ratios involves attending to and coordinating  
two quantities.

Attending to two quantities is an aspect of reasoning with ratios 
that mathematically knowledgeable adults understand so  
implicitly that they often do not recognize its importance until they 
become aware of its absence in the reasoning of children. Before 
children are able to reason with ratios, they typically reason with a 
single quantity. This type of reasoning is called univariate reason-
ing. Harel and colleagues (1994) offer an example of this reasoning. 
Sixth-grade students were shown a picture of a carton of orange 
juice and were told that the juice was made from orange concen-
trate and water. Next to the carton in the picture were two glasses—
a large glass and a small glass—both filled with orange juice from 
the carton. The sixth graders were asked if they thought that the 
orange juice from the two glasses would taste equally orangey, or if 
they thought that the juice in one glass would taste more orangey 
than the juice in the other.

The results are fascinating. Half the class responded incorrectly 
that the juice from the two glasses would not be equally orangey. 
About half of these students said that the juice in the large glass 
would taste more orangey, and about half chose the small glass as 
likely to taste more orangey. Their explanations suggest that they 
either focused on one quantity—the water or the orange concen-
trate—or attended to both quantities but did not coordinate them. 
For example, one student explained that the juice in the large glass 
would taste more orangey “because the glass is bigger, so it would 
hold more orange” (p. 333). Other students explained that the juice 
in the small glass would taste more orangey because a smaller vol-
ume would allow less water to get in, which would leave more room 
for the orange concentrate.

The importance of coordinating two quantities becomes clear 
in the following example, which shows the intellectual achieve-
ment that such coordination can represent for children. In a study 
by Lobato and Thanheiser (2002), students in a class viewed a 
computer screen with SimCalc Mathworlds software showing two 
characters—a clown and a frog—capable of being set to walk at con-
stant speeds. The clown was set to walk 10 centimeters in 4 seconds. 
The children were asked to enter distance and time values for the 
frog so that it would walk at the same speed as the clown (see fig. 
1.5). The simulation software would then show the two journeys 
simultaneously, thus providing feedback that students could use to 
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determine whether the values that they entered were correct. This 
activity presented a challenge for the students. Many used a guess-
and-check strategy; for example, one student tried 15 centimeters 
and 8 seconds and then kept adjusting the time until he arrived at 
15 centimeters in 6 seconds. Other students used numeric patterns—
for example, doubling the 10 and the 4 to obtain 20 centimeters in 
8 seconds.

Fig. 1.5. A screen from Roschelle and Kaput’s (1996)  
SimCalc Mathworlds 

When the teacher asked the students to explain why walking 
20 centimeters in 8 seconds is the same speed as walking 10 centi-
meters in 4 seconds, one student, Terry, created a drawing that sug-
gests that he had not formed a ratio. Figure 1.6 shows a re-creation 
of his diagram. He drew lines to represent the distances walked by 
the two characters without attempting to show that the frog’s dis-
tance was double the clown’s distance. He then relied on calcula-
tions, stating, “If you want frog’s distance to be 20, then you have 
to multiply 10 by 2 to get 20. Since you multiplied 10 by 2, you 
also need to multiply 4 by 2 to get 8.” Terry did not explain why 
the time and distance had to be doubled or how multiplying by two 
could be represented in his drawing.

Fig. 1.6. A re-creation of Terry’s diagram 

Jim, the next student to go to the board, offered a limited  
explanation that was nearly identical to Terry’s. The discussion  
appeared to stall, when suddenly another student—Brad—had a new 
idea that he seemed eager to share. Brad explained that doubling 
works as follows:
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Because the clown is walking the same distance; it’s just that he’s 
walking the distance twice… he’s walking it once, going li, li, li, li, 
li, li, [Brad made a “li” sound, evidently to represent time, while his 
hand retraced the 10 cm line that Terry had drawn], all the way to 
here [Brad made a vertical hash mark at 10 cm]. Four seconds. Okay. 
He’s going to walk it again. Another four seconds, li, li, li, li, li, li, li, 
li. Another ten centimeters in four seconds. He’s done. (Lobato and 
Thanheiser 2002, p. 173) 

Brad’s explanation involved three elements lacking in both 
Terry’s and Jim’s work. First, Brad appeared to coordinate time and 
distance by using sound to represent time while using a hand ges-
ture to represent distance. Second, Brad seemed to coordinate dis-
tance and time by forming a “10 centimeters in 4 seconds chunk,” 
which he could repeat. In contrast, Terry seemed to pick one quan-
tity—namely, 20 centimeters—and then produced the other related 
quantity of 8 seconds. Finally, Brad’s image accounted for the frog 
after the initial 10 centimeters in 4 seconds by noting that the frog 
walks another 10 centimeters in 4 seconds. By repeating the action 
of walking 10 centimeters in 4 seconds, the frog will not go faster 
or slower but will walk at the same speed in both journeys, as well 
as in the combined journey. In contrast, Terry’s explanation did 
not account for how far the frog walked and in what time after the 
clown had stopped.

As necessary as it is for students to coordinate two quanti-
ties in their reasoning, doing so is not sufficient for understanding 
ratios. For example, it is possible for students to coordinate two 
quantities by engaging in a form of reasoning that is different from 
ratio reasoning—namely, additive reasoning. Consider the following 
situation: 

Jonathan has walked 5 feet in 4 seconds. How long should Rafael 
take to walk 15 feet if he walks at the same speed as Jonathan? 

A seventh grader, Miriam, responded that Rafael should take 14 
seconds. She reasoned that 15 feet is 10 more than 5 feet, so you 
should add 10 seconds to 4 seconds to get 14 seconds. Miriam ac-
counted for both time and distance, but her reasoning was additive 
because it focused on questions related to “how much more” or 
“how much less” one quantity is than another. Miriam’s work raises 
the question of what it means to form a ratio.
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Essential Understanding 2

A ratio is a multiplicative comparison of two quantities, or it is a 
joining of two quantities in a composed unit.

There are two ways to form a ratio, both of which involve coor-
dinating two quantities. One way is by comparing two quantities 
multiplicatively. The second way is by joining or composing the two 
quantities in a way that preserves a multiplicative relationship.

A ratio as a multiplicative comparison 
One way to form a ratio is to create a multiplicative comparison of 
two quantities. For example, consider comparing the lengths of the 
two worms in figure 1.7. Worm A is 6 inches long, and worm B is 
4 inches long. The lengths of the worms can be compared in two 
ways—additively and multiplicatively. Additive comparisons of the 
lengths would pose and answer questions such as the following:

•  How much longer is worm A than worm B?  
(Worm A is 2 inches longer than worm B.)

•  How much shorter is worm B than worm A?  
(Worm B is 2 inches shorter than worm A.)

By contrast, multiplicative comparisons would consider questions 
like those below: 

•  How many times longer is worm A than worm B? (Worm A is 
11/2 times the length of worm B.)

•  The length of worm B is what part, or fraction, of the length 
of worm A? (Worm B is 2/3 the length of worm A.) 

10 2 3 4 5 6

Worm A

Worm B

Fig. 1.7. Comparing the lengths of two worms

A multiplicative comparison is a ratio; an additive comparison 
is not. In general, forming a multiplicative comparison involves ask-
ing, “How many times greater is one thing than another?” or “What 
part or fraction is one thing of another?”
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Mathematics uses several conventional notations to represent 
ratios. You might write the ratio of the length of worm A to the 
length of worm B as 11/2 : 1, 11/2 to 1, or simply 11/2. You could 
also report equivalent ratios, such as 3 : 2, 3 to 2, or 3/2, as well as 
6 : 4, 6 to 4, or 6/4 . You could express the ratio of the lengths of 
worm B to worm A as 2 : 3, 2 to 3, or 2/3, as well as 4 : 6, 4 to 6, or 
4/6 , in addition to 1 : 11/2 or 1 to 11/2. 

A ratio as a composed unit
Another way to form a ratio is by composing (joining) two quanti-
ties to create a new unit. Evidence of the formation of a  
composed unit often appears in a student’s iterating (repeating) or 
partitioning (breaking apart into equal-sized sections) of a com-
posed unit. Brad’s iterating of “10 centimeters in 4 seconds” in the 
earlier example involving the clown and the frog offers evidence of 
his formation of a composed unit. 

In fact, Brad’s discovery led to a flurry of activity, in which 
other students used the 10 : 4 unit to create new “same speed” 
values. For example, Denise iterated the 10 : 4 unit three times to 
conclude that walking 30 centimeters in 12 seconds was the same 
speed as walking 10 centimeters in 4 seconds. Terry partitioned the 
10 : 4 unit into four equal parts, formed a new composed unit of 
2.5 : 1 (indicated by the shaded section in fig. 1.8), and then iterated 
the 2.5 : 1 unit four times to re-create 10 centimeters in 4 seconds. 
He explained why walking 2.5 centimeters in 1 second was the 
same speed as walking 10 centimeters in 4 seconds by stating, “It 
would be like he’s walking one-fourth of the 10 and 4; it’s like one-
fourth of each thing,” meaning 1/4 of the 10 centimeters and 1/4 of 
the 4 seconds.

2.5 cm

1 sec

2.5 cm

1 sec

2.5 cm

1 sec

2.5 cm

1 sec

4 sec

10 cm

Fig. 1.8. A diagram showing that walking 2.5 centimeters in 1 second 
is the same speed as walking 10 centimeters in 4 seconds  

(Lobato and Thanheiser 2002, p. 174)

Forming a ratio as a composed unit does not by itself mean that 
the student has attained the sophisticated understanding of propor-
tionality that is reflected in the big idea of ratios, proportions, and 
proportional reasoning. Forming a composed unit is a rudimentary, 
yet foundational concept, which can be used in conjunction with 
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other essential understandings (especially Essential Understanding 
7) to develop an understanding of the big idea of proportional 
reasoning. 

How do the two ways of thinking about a ratio—as a multipli-
cative comparison and as a composed unit—help in problem solv-
ing? Reflect 1.3 encourages you to consider the usefulness of the 
two concepts of a ratio expressed in Essential Understanding 2.

You can use a picture like that in figure 1.9 to solve the prob-
lem by using a multiplicative comparison. First, determine how 
many times greater the amount of yellow paint is than the amount 
of blue paint in the original batch of green paint. One way to do 
this is to form a group of 2 
cans of blue paint. Then find 
the number of groups of 2 
cans that you can make with 
7 cans. It takes 31/2 groups of 
2 cans of blue paint to match 
the amount of yellow paint 
(see fig. 1.10). Thus, the ratio 
of yellow paint to blue paint 
is 31/2 or 3.5.

3 groups 1
2 group

Fig. 1.10. Three-and-a-half groups of 2 cans of blue paint yield an 
amount equal to the amount of yellow paint in the original batch.

You can use this ratio to find other combinations of blue and 
yellow paint that result in the same shade of green paint. For ex-
ample, if you use 5 cans of blue paint, then you need to mix in 31/2 
times as many cans of yellow paint. As shown in figure 1.11, 31/2 
groups of 5 cans are equal to 171/2 cans. Thus, one way to make a 
new batch of paint in the same shade of green as the original batch 
is to use 5 cans of blue paint and 171/2 cans of yellow paint.

Essential  
Understanding 7 

Proportional  
reasoning is complex 

and involves  
understanding that—

•   equivalent ratios 
can be created 

by iterating and/
or partitioning a 

composed unit; 

•   if one quantity in a 
ratio is multiplied 

or divided by a 
particular factor, 

then the other 
quantity must be 

multiplied or  
divided by the 

same factor to 
maintain the  
proportional  

relationship; and

•   the two types of 
ratios—composed 

units and multi-
plicative compari-
sons—are related.

Yellow

Blue

Fig. 1.9. Two cans of blue paint 
and 7 cans of yellow paint

Reflect 1.3  

Suppose that you have made a batch of green paint by mixing 2 cans of blue 
paint with 7 cans of yellow paint. What are some other combinations of num-
bers of cans of blue paint and yellow paint that you can mix to make the same 
shade of green? Solve the problem in two different ways—first by using a multi-
plicative comparison and then by using a composed unit.
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1
2 group = 2   cans1

2
3 groups = 15 cans

Fig. 1.11. The number of cans of paint in 3 1/2 groups of 5 cans

You can also solve the paint problem by using a composed 
unit. First, join 2 cans of blue paint and 7 cans of yellow paint to 
form a 2 : 7 unit, or batch (see fig. 1.12). Then iterate or partition  
the 2 : 7 batch to find the 
number of cans of yellow 
paint that you need for 5 
cans of blue paint. Iterating 
the 2 : 7 batch twice gives you 
4 cans of blue paint and 14 
cans of yellow paint. Because 
you need one more can of 
blue paint, partition the 2 : 7 
batch into two equal parts 
to obtain 1 can of blue paint 
and 31/2 cans of yellow paint, as in figure 1.13. In all, 21/2 batches 
of paint require 5 cans of blue paint and 171/2 cans of yellow paint.

2 batches
1
2batch

Fig. 1.13. Two-and-a-half batches of green paint,  
made with 5 cans of blue paint

The notion of a ratio in Essential Understanding 2 as a mul-
tiplicative comparison or a composed unit may differ from defini-
tions of ratio in some textbooks. For example, a ratio is commonly 
defined as a comparison of two quantities. Such a definition is 
incomplete because it does not clarify whether the comparison is 
additive or multiplicative.

A ratio is also sometimes defined as a comparison of two num-
bers that uses division and is often expressed in fraction form. This 
definition leads students to write expressions such as a/b or  
a 4 b. However, this definition has several shortcomings. First, it is 
possible to form a ratio without performing division or creating a 
fraction. Second, simply by writing “a/b” or “a ÷ b,” a student gives 

Blue
Yellow

Fig. 1.12. A composed unit of 2 
cans of blue paint and 7 cans of 
yellow paint
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no guarantee that he or she has actually mentally formed a ratio 
between a and b. 

For instance, consider the middle school task shown in figure 
1.14 in the context of making orange juice by mixing cans of or-
ange concentrate with cans of water. Each purple rectangle in the 
figure represents a can of concentrate, and each white rectangle 
represents an equal quantity of water. The student must determine 
the ratio of concentrate to water in the orange juice.

Write the ratio of orange 
concentrate to water.

Fig. 1.14. A typical middle school ratio task

Suppose that a student correctly writes “2/3” or enters “2 ÷ 3” 
into a calculator to obtain approximately 0.667. This performance 
does not mean that he or she understands the situation as involving 
a ratio; it may simply represent a whole-number counting strategy. 
The student may count the number of cans of orange concentrate, 
count the number of cans of water, and write a 2 “over” a 3, with-
out understanding the meaning of 2/3. In fact, many seventh grad-
ers can correctly write 2/3 in this situation but do not demonstrate 
an ability to reason with ratios in response to a simple follow-up 
question: 

Does a batch of orange juice made with 2 cans of orange concen-
trate and 3 cans of water taste equally orangey, more orangey, or 
less orangey than a batch made with 4 cans of orange concentrate 
and 6 cans of water?

Typical responses that indicate an inadequate understanding of 
ratios include (a) “the second batch is more orangey because both 
numbers are bigger” and (b) “the second batch tastes more orangey 
because you used more orange concentrate.” By writing “2/3 ,” stu-
dents can give the illusion that they have a greater understanding 
of ratio than is actually the case. Remember, forming a ratio is a 
cognitive task—not a writing task. And finally, note that defining a 
ratio in terms of division places an emphasis on numeric calcula-
tions. Essential Understanding 3 highlights an important math-
ematical idea that does not involve numbers but is related to the 
formation of ratios in real-world situations.
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Essential Understanding 3

Forming a ratio as a measure of a real-world attribute involves  
isolating that attribute from other attributes and understanding the 
effect of changing each quantity on the attribute of interest. 

In many of the examples of ratio presented thus far, the ratio mea-
sures some attribute in a real-world situation. For example, the ra-
tio of orange concentrate to water is a measure of the oranginess of 
the juice. The ratio of the height of a wheelchair ramp to the length 
of its base is a measure of the steepness of the ramp. Simon and 
Blume (1994) coined the term “ratio-as-measure” for a ratio that 
measures some real-world attribute. Forming a “ratio-as-measure” 
involves two non-numerical processes: (a) isolating attributes and 
(b) understanding the effect of changing a quantity on the attribute 
to be measured by the ratio. The following discussion considers 
each of these in turn.

Isolating attributes 
Before someone can use a ratio to measure an attribute, he or she 
needs to isolate the attribute from other measurable attributes in 
the situation. Seeing how difficult it can be for students to iso-
late attributes can help convey the significance of this essential 
understanding.

In one study, seventeen high school students were asked to cre-
ate a way to measure the steepness of a wheelchair ramp (Lobato 
2008). Although the students had recently received instruction in 
slope, they did not automatically measure the height and base of the 
ramp and form a ratio. More than half of the students struggled to 
isolate the attribute of steepness from other attributes, such as the 
work required to climb the ramp. Many students talked about the 
importance of including the length of the slanted part of the ramp in 
their measure of steepness, arguing that a longer ramp is more diffi-
cult to climb; a person slows down as he or she moves up the ramp. 

To gain a better understanding of this difficulty, consider the 
two nonidentical ramps with the same steepness in figure 1.15. 

Fig. 1.15. Two nonidentical ramps with the same steepness
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Students might argue that the ramp on the right is steeper because 
it is higher, longer, or harder to climb. For example, if students do 
not isolate the attribute of steepness from the attribute of the work 
required to climb the ramp, then they might conclude incorrectly 
that the ramps do not have the same steepness, because people will 
become more tired when climbing the ramp on the right.

Understanding the effect of changing a quantity
Students need to understand which quantities affect the attribute to 
be measured by a ratio and how the quantities affect it. Again con-
sider the situation of a wheelchair ramp. If students form a ratio of 
the height to the base of the ramp, then the attribute that the ratio 
measures is the steepness of the ramp. In the case of a ramp with a 
platform at the top, the students need to understand that decreas-
ing the length of the base of the ramp (while leaving its height and 
platform unchanged) will increase the steepness of the ramp, but 
increasing the length of the base will decrease its steepness, as il-
lustrated in the first and second changes to the original ramp in 
figure 1.16. Similarly, increasing the height of the ramp (while leav-
ing the base unchanged) will increase the steepness of the ramp, but 
decreasing the height will decrease its steepness, as illustrated in 
the third and fourth changes in the figure. Increasing or decreasing 
the length of the platform will not change the steepness of the ramp 
(the last change in the figure shows an increase in the length of the 
platform).

One of the authors found that a majority of high school stu-
dents in a study (Lobato 2008) had difficulty determining the effect 
of changing one quantity at a time on the steepness of the ramp. 
Students were able to reason correctly that increasing the height 
made the ramp steeper and decreasing the height made the ramp 
less steep. However, over half of the students were unable to deter-
mine the effect of increasing or decreasing the length of the base 
or the platform. For example, one student argued that making the 
length of the base shorter makes the ramp less steep, and making 
the base longer makes the ramp steeper. These difficulties point to 
the importance of Essential Understanding 3.
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Fig. 1.16. The effect on the steepness of a ramp of changing one quantity at a time

Original ramp

• Decrease length of base
• Ramp is steeper

• Increase length of base
• Ramp is less steep

• Increase height
• Ramp is steeper

• Decrease height
• Ramp is less steep

• Increase length of 
   platform
• Ramp is same steepness
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Essential Understanding 4

A number of mathematical connections link ratios and fractions:
•  Ratios are often expressed in fraction notation, although 

ratios and fractions do not have identical meaning.
•  Ratios are often used to make “part-part” comparisons, but 

fractions are not.
•  Ratios and fractions can be thought of as overlapping sets.
•  Ratios can often be meaningfully reinterpreted as fractions.

Because ratios can be written in fraction form as a/b , many students 
believe that ratio is just another word for fraction. The use of fraction 
language in discussions of problems involving ratios can be particu-
larly confusing to students. For example, in discussing the solution to 
the proportion shown in connection with the problem in figure 1.17, 
a teacher may say, “Six is the answer because 2/3 and 6/9 are equiva-
lent fractions.” Essential Understanding 4 highlights the mathematical 
connections between ratios and fractions. The notation a/b can easily 
cloud students’ understanding of ratios if the students have not yet 
grasped the connections between ratios and fractions.

If you make orange juice in the ratio of 2 cans of orange 
concentrate to 3 cans of water, how many cans of orange 
concentrate do you need to use with 9 cans of water?

22
3 93 9

== xx

Fig. 1.17. A typical textbook problem expressed as a proportion

Ratios and fractions do not have identical meanings. Ratios 
are often used to make part-part comparisons, though fractions are 
not. For example, consider a salad dressing that is 2 parts vinegar 
to 5 parts oil. The ratio of vinegar to oil is expressed as 2 : 5, 2 to 5, 
or 2/5 . In this context, 2/5 is a part-part comparison. In contrast, the 
fraction of the salad dressing that is oil is 5/7, which is a part-whole 
comparison, and the fraction that is vinegar is 2/7, which is another 
part-whole comparison.

Ratios and fractions can be conceived as overlapping sets 
(Clark, Berenson, and Cavey 2003). An example of a ratio that is not 
a fraction is the golden ratio 

( 5 1
2

5 1+5 1 ). 

This ratio is an irrational number, whereas fractions are rational 
numbers. A second example of a ratio that is not a fraction is the 

Interpreting a 
fraction as a ratio 

is one of several 
interpretations of 

fractions discussed 
in Developing 

Essential 
Understanding of 
Rational Numbers 

for Teaching 
Mathematics in 

Grades 3–5 
(Barnett-Clarke 

et al., forthcoming).
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part-part comparison of vinegar to oil presented above—namely, 
2/5 . Furthermore, ratios can involve more than two terms, such as 
the ratio of numbers of containers of whole milk to numbers of 
containers of low-fat milk to numbers of containers of nonfat milk 
in a certain store (e.g., 5 : 3 : 1). In the intersection of the sets of  
ratios and fractions are ratios that are formed as part-whole com-
parisons, as illustrated in figure 1.18. For example, the ratio of 
vinegar to total ingredients in the salad dressing—namely, 2 : 7—can 
also be thought of as a fraction: two-sevenths of the dressing is 
vinegar.

Ratios Fractions

Fig. 1.18. Ratios and fractions as overlapping sets 

At the other extreme are the various ways of thinking of frac-
tions as entities other than part-whole comparisons. These ways 
include thinking of a fraction as a point on a number line (e.g., 8/9 
as a number between 0 and 1 on a number line). A fraction con-
ceived in this way is often called a “fraction-as-measure.” A frac-
tion can also be thought of as an operator, such as a “shrinker” or 
“stretcher,” which transforms the size of a given amount. Consider, 
for example, shrinking an amount by the fraction 1/3. In neither 
case—fraction as measure or fraction as operator—is the fraction 
typically conceived as a ratio.

Despite the fact that ratios and fractions do not share identi-
cal meanings, many ratios can be meaningfully reinterpreted as 
fractions. Reconsider the 2 to 5 ratio of vinegar to oil in the salad 
dressing example. You can reinterpret this part-part comparison 
as a part-whole comparison (i.e., as two-fifths of something). 
Remember that the ratio 2 : 5 does not indicate the exact amounts 
of vinegar or oil used in a particular recipe. The dressing could 
use 2 cups of vinegar and 5 cups of oil, 4 cups of vinegar and 10 
cups of oil, 1 cup of vinegar and 2 1/2 cups of oil, and so forth. The 
recipe might also use 6 tablespoons of vinegar and 15 tablespoons 
of oil, 1/2 pint of vinegar and 1 1/4 pints of oil, and so on. In each of 
these recipes, 2/5 also has meaning as a fraction because each recipe 
calls for two-fifths as much vinegar as oil.

For example, consider a salad dressing recipe that calls for 4 
cups of vinegar and 10 cups of oil. The fact that 4 is 2/5 of 10 can 
be illustrated visually. Figure 1.19 separates the 10 cups into 5 equal 
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groups, or fifths. One-fifth of 10 cups is 2 cups. Figure 1.20 then 
shows two one-fifths of 10 cups, or 4 cups. The amount of vinegar 
in this recipe (4 cups) is 2/5 of the amount of oil (10 cups). In sum, 
the ratio 2 : 5 can be reinterpreted as the fraction 2/5, to mean that 
salad dressing made from this recipe always has 2/5 as much vinegar 
as oil, no matter what particular amounts of vinegar and oil some-
one uses.

10 cups
of oil

of the oil is 2 cups1
5 

Fig. 1.19. One-fifth of 10 cups

4 cups
of vinegar

of the oil is 4 cups2
5 

10 cups
of oil

Fig. 1.20. Two-fifths of 10 cups

A second way to interpret the ratio 2 : 5 as the fraction 2/5 is 
possible. Suppose that you use 2 cups of vinegar and 5 cups of oil 
to make the salad dressing. Figure 1.21 shows the “joining” of the 
vinegar and oil to form a batch of salad dressing. You maintain 
the ratio 2 : 5 if you partition the batch into 5 equal parts. Your 
partitioning of the batch partitions both the oil and vinegar into 5 
equal parts. Splitting 5 cups of oil into 5 equal parts yields 1 cup 
of oil in each part. Splitting 2 cups of vinegar into 5 equal parts 
is more difficult. One way is to split the first cup of vinegar into 5 
equal parts, which yields 1/5 cup of oil in each part. By repeating 
this process with the second cup, you obtain another 1/5 cup in each 
part. Altogether, if you partition 2 cups of oil into 5 equal parts, you 
have 2/5 of a cup of oil in each part. Consequently, salad dressing 
made with 2/5 cup of vinegar and 1 cup of oil, as illustrated in  
figure 1.22, maintains the 2 : 5 ratio of vinegar to oil.

In sum, the ratio 2 : 5 (meaning “2 parts vinegar to 5 parts oil”) 
can be reinterpreted as the fraction 2/5  in two different ways. The 
first way is to say that in this salad dressing recipe the amount of 
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vinegar is always 2/5 the amount of oil, no matter what particular 
amounts of vinegar and oil someone uses to make the dressing. 

Fig. 1.21. A composed unit of 2 cups of vinegar and 5 cups of oil

Fig. 1.22. One-fifth of the batch is 2/5 cup of vinegar and 1 cup of oil

This interpretation is based on understanding the ratio 2 : 5 as a 
multiplicative comparison—namely, that 2 is 2/5 of 5. The second 
way to interpret the ratio as a fraction is to think of the two-fifths 
as referring to the pairing of 2/5 cup of vinegar with 1 cup of oil, 
which maintains the recipe. This interpretation is based on under-
standing the ratio 2 : 5 as a composed unit, and then partitioning 
that unit into five equal parts. Reflect 1.4 invites you to apply these 
two ways of reinterpreting a ratio as a fraction in a different real-
world context.

One way to reinterpret the ratio 3 : 4 (3 gallons every 4 min-
utes) as the fraction 3/4 is to say that the number of gallons of water 
in the pool is always 3/4 of the number of minutes that have passed, 

Reflect 1.4  

Water is being pumped through a hose into a large swimming pool so that 3 
gallons collect in the pool every 4 minutes. What are two different ways to 
reinterpret the ratio 3 : 4 as the fraction 3/4 in this context? What are two ways 
to reinterpret the ratio 4 : 3 as the improper fraction 4/3? 
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assuming that the water continues to flow into the pool at a con-
stant rate. For example, after 4 minutes, 3 gallons of water are in 
the pool, and 3 is 3/4 of 4. Similarly, after 20 minutes, 15 gallons 
of water are in the pool, and 15 is 3/4 of 20. This interpretation is 
based on thinking of the ratio 3 : 4 as a multiplicative comparison—
namely, that 3 is 3/4 of 4. A second way to reinterpret the ratio 3 : 4 
as the fraction 3/4 is to consider that 3/4 of a gallon is the amount of 
water that needs to flow into the pool in 1 minute to maintain the 
same pumping rate. This interpretation is based on thinking of the 
ratio 3 : 4 as a composed unit and then partitioning that unit into 
four equal parts.

The pumping rate can also be captured by the ratio 4 : 3, mean-
ing that 4 minutes elapse for every 3 gallons of water that are 
pumped into the pool. This ratio can be reinterpreted as the improp-
er fraction 4/3 in two ways. The first way is to say that the number 
of minutes that elapse is always 4/3 times the number of gallons of 
water that has flowed into the pool in that time. For example, 12 
gallons are pumped in 16 minutes, and 12 × 4/3 = 16. This interpre-
tation is based on understanding the ratio 4 : 3 as a multiplicative 
comparison—namely, that 4 is 4/3 (or 11/3 ) times 3. The second way 
to reinterpret the ratio 4 : 3 as the improper fraction 4/3 is to consider 
that 4/3 minutes is the amount of time that it takes to pump 1 gallon 
of water into the pool. This interpretation is based on joining 4 min-
utes and 3 gallons into a composed unit and partitioning that unit 
into three equal parts. 
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Essential Understanding 5

Ratios can be meaningfully reinterpreted as quotients.

Just as many ratios can be meaningfully reinterpreted as fractions, 
ratios can also be reinterpreted as quotients. For example, con-
sider a situation in which a leaky faucet has been dripping all day. 
Suppose that 4 ounces of water drip every 2 minutes, a rate that is 
expressed by the ratio 4 : 2. If someone places a bucket under the 
faucet, he or she will collect 8 ounces of water after 4 minutes, 20 
ounces after 10 minutes, 120 ounces after 1 hour, and so on. You 
can reinterpret the ratio 4 : 2 as the quotient 4 ÷ 2. One meaning 
of division is sharing. In the context of the leaky faucet, you can 
think of the number of ounces of water that have dripped as div-
vied up, or shared, among the number of minutes. Figure 1.23  
illustrates 4 ÷ 2 as the equal sharing of 4 ounces of water between 
2 minutes (much as 4 cookies might be shared between 2 people). 
Shaded arrows in the figure indicate the divvying-up process. The 
resulting quotient of 2 means that 2 ounces of water drip every 
minute.

1 min 1 min

1 oz 1 oz 1 oz 1 oz

4  2 = 2

Fig. 1.23. Four ounces of water shared equally between 2 minutes

Consider the same situation again with a more difficult ratio. 
Suppose that 2 ounces of water drip every 5 minutes. Again, you 
can reinterpret the ratio—in this case, 2 : 5—as a quotient (2 ÷ 5) 
by thinking of the number of ounces of water (2) as shared among 
the number of minutes (5). Figure 1.24 illustrates the process. The 
first ounce is split into 5 equal parts so that 1/5 ounce is associ-
ated with each of the 5 minutes. The second ounce is also split five 
ways, with another 1/5 ounce being associated with each minute. 
In all, 2 one-fifths of an ounce, or 2/5 of an ounce, is matched 
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with each minute. Thus, in this situation the quotient 2 ÷ 5 means 
that 2/5 of an ounce of water drips every minute, or, expressed 
as a decimal, 0.4 ounces of water drip per minute. Reinterpreting 
ratios as quotients can be useful in making sense of a proportion, 
which is an expression of equality between two ratios.

1 oz 1 oz

1 min 1 min 1 min 1 min 1 min

Fig. 1.24. Two ounces of water shared equally among 5 minutes
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Essential Understanding 6

A proportion is a relationship of equality between two ratios. In 
a proportion, the ratio of two quantities remains constant as the 
corresponding values of the quantities change.

When textbooks call on students to solve a problem involving a 
proportion, they typically prompt the students to set up a proportion 
in the form shown in figure 1.25. However, students who have not 
yet mentally formed ratios, either as composed units or multiplica-
tive comparisons, may interpret the proportion simply as a template 
for inserting whole numbers into boxes.

=

Fig. 1.25. A template for setting up a proportion

Consider again the situation involving equal walking speeds 
for the clown and the frog, discussed in connection with Essential 
Understanding 1: 

The clown walks 10 centimeters in 4 seconds. How far will the 
frog walk in 8 seconds if the frog travels at the same speed as the 
clown? 

Students might be able to set up a proportion correctly to solve the 
problem:

Distance (cm) 10
=

x
 Time (sec) 4 8

They might be able to use the proportion to determine cor-
rectly that the frog walked 20 centimeters. Yet, they might not have 
mentally formed a ratio. Many middle school students might harbor 
the thought that the frog is actually going faster than the clown 
because he is going farther—an example of univariate reasoning, as 
discussed earlier—or because both numbers on the frog’s “side” of 
the proportion—20 and 8—are bigger than the corresponding num-
bers on the clown’s side—an example of whole-number reasoning. It 
is difficult for many middle school students to conceive that some-
thing in the situation remains the same while the distance and time 
values are changing. 

Understanding that a proportion is a relationship of equality 
between two ratios involves several related ideas. First, students 

Essential 
Understanding 1 

Reasoning with ratios 
involves attending to 
and coordinating two 
quantities.
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need to understand the meaning of the equals sign in the symbolic 
expression of the proportion. Reflect 1.5 encourages you to focus on 
the meaning of equality in this context.

In this context, the equals sign indicates that the speeds
of the clown and the frog are the same. By applying Essential 
Understanding 5, you can reinterpret the ratios 10/4 and 4 and 4 20/8 as the 
quotients 10 ÷ 4 and 20 ÷ 8, respectively, both of which represent a 
speed of 2.5 centimeters per second. 

Making sense of the proportion 10/4  = 20/8 requires an under-
standing of additional ideas. Teachers sometimes give meaning to 
the equality by pointing out to their students that the fraction 20/8
can be reduced to the fraction 10/4. However, it is important to real-
ize that students can reduce fractions by employing an algorithm 
that requires only whole-number understanding—that is, they can 
divide 20 by 2 and 8 by 2. Students who work in this way have not 
necessarily conceived of 10 : 4 and 20 : 8 as ratios representing the 
same speed. Furthermore, simply calling a ratio a fraction gives no 
guarantee that students can meaningfully reinterpret ratios as frac-
tions. Instead, they need to have a reliable understanding of one of 
the meanings of a fraction articulated in Essential Understanding 4. 

For example, the ratio 10 : 4 can be reinterpreted as a frac-
tion in the walking context—namely, as 10/4 centimeters in 1 second 4 centimeters in 1 second 4
(i.e., ten one-fourths of a centimeter in 1 second). This fractional 
interpretation of the ratio 10 : 4 is based on joining 10 centimeters 
and 4 seconds into a composed unit and partitioning the unit into 
four equal parts. Partitioning 4 seconds into four equal parts yields 
1 second in each part. Partitioning 10 centimeters into four equal 
parts involves splitting each centimeter into fourths and gathering 
1/4 from each centimeter for a total of 10 one-fourths, or 4 from each centimeter for a total of 10 one-fourths, or 4 10/4, cen-
timeters in each part. Thus, the fraction 10/4 represents the distance 4 represents the distance 4
that the clown or the frog walks in 1 second. Similarly, the ratio 
20 : 8 can be reinterpreted as 20/8 centimeters in 1 second. Seeing 
that the fractions 10/4 and 4 and 4 20/8 represent the same distance walked 
in 1 second involves reasoning such as the following: Because 1/8
is half of 1/4 , two one-eighths is equal to 4 , two one-eighths is equal to 4 1/4. Thus ten groups of 2/8
will equal the value of ten groups of 1/4, so 20/8 = 10/4. 

Reflect 1.5  

Consider the proportion involved in the problem of the clown that walks 
10 centimeters in 4 seconds and the frog that walks 20 centimeters in 8 seconds: 
10/4 = 20/8.  What is the meaning of the equals sign in this context? In other 
words, what is equal in the walking situation?

Ratios can 
often be 

meaningfully 
reinterpreted as 
fractions (from 

Essential 
Understanding 4).

Essential 
Understanding 5

Ratios can be 
meaningfully 

reinterpreted as 
quotients.
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Reflect 1.6 gives you an opportunity to consider a new propor-
tion in the salad dressing context discussed earlier and to explain its 
meaning by reinterpreting its ratios as fractions and by considering 
the meaning of the equals sign in this context.

The equals sign indicates that two batches of salad dressing 
(one made from 2 parts vinegar and 3 parts oil and the other made 
from 10 parts vinegar and 15 parts oil) are equally vinegary, mean-
ing that they will taste the same. To understand why this is 
the case, you can reinterpret the ratios 2 : 3 and 10 : 15 as fractions. 
Specifically, the fraction 2/3 means that a recipe made from 2/3 of a 
cup of vinegar and 1 cup of oil will maintain the 2 : 3 ratio, thus 
preserving the taste. Similarly, a salad dressing made from 10/15 
of a cup of vinegar and 1 cup of oil will preserve the 10 : 15 ratio. To 
establish that 2/3 of a cup is equal to 10/15 of a cup, think of 15/15 as 
5/15  + 5/15 + 5/15 . Each group of 5 one-fifteenths is equal to 1/3 cup 
because 15/15 (1 cup) was split into three equal parts of 5/15 each. 
Thus, 2/3 of a cup (1/3 + 1/3) is equal to 10/15 of a cup (5/15 + 5/15).

The ability to build on the equality of two ratios (a proportion) 
to develop a set of infinitely many equivalent ratios is a hallmark of 
proportional reasoning. Proportional reasoning is complex and in-
volves at least the three related aspects in Essential Understanding 7. 

Reflect 1.6

Consider the following proportion arising in the context of making a salad 
dressing:

 

Vinegar
Oil

2
3

10
15

=

What is the meaning of this statement in the context?
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Essential Understanding 7

Proportional reasoning is complex and involves understanding that—
•  equivalent ratios can be created by iterating and/or partitioning a 

composed unit;
•  if one quantity in a ratio is multiplied or divided by a particular 

factor, then the other quantity must be multiplied or divided by 
the same factor to maintain the proportional relationship; and

•  the two types of ratios—composed units and multiplicative com-
parisons—are related. 

The idea of forming a ratio as a composed unit is a foundational 
concept that is not, by itself, indicative of sophisticated ratio 
reasoning. In fact, some researchers refer to the formation of a 
composed unit as pre-ratio reasoning (Lesh, Post, and Behr 1988). 
Essential Understanding 7 presents three crucial aspects of sophisti-
cated proportional reasoning. These three components are presented 
in order of increasing sophistication, although not everyone comes 
to an understanding of them in this particular order. The discussion 
that follows is an introduction to these ideas; a full development of 
them is beyond the scope of this book. 

Creating equivalent ratios 
At the beginning levels of proportional reasoning, students iterate 
(repeat) and/or partition (break into equal-sized parts) a composed 
unit to create a family of equivalent ratios. For example, consider 
the following problem: 

Begin with a ramp that is 3 centimeters high and has a base that is 
4 centimeters long. Make all the ramps you can that have the same 
steepness as the original ramp but are not identical to it. 

If a student makes a copy of the original ramp, then both ramps 
have the same steepness, since neither the height nor the length 
of the base changed (see fig. 1.26). Aligning the ramp and its copy 
“tip to tip,” as shown in figure 1.27, will not change the steepness 
of either ramp. The resulting ramp, with a height of 6 centimeters 

3 cm

4 cm

3 cm

4 cm

Fig. 1.26. A ramp and an identical copy of it
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and a base of 8 centimeters, has the same steepness as the original 
ramp. The iteration process can be continued to create other ramps 
with the same steepness: a ramp with a height of 12 centimeters and 
a base of 16 centimeters, one with a height of 21 centimeters and a 
base of 28 centimeters, and so forth.

 

6 cm

8 cm

Fig. 1.27. A new ramp with the same steepness as the original, made 
by aligning the original and its copy tip to tip (dotted lines complete 

the drawing of the new ramp) 

Students can also partition the original ramp to form new 
ramps of equal steepness. Partitioning the height of the original 
ramp into two equal parts and partitioning the base into two equal 
parts results in a new ramp with a height of 11/2 centimeters and 
a base of 2 centimeters (see fig. 1.28). Students can verify that the 
new ramp has the same steepness as the original ramp by iterating 
the new ramp and stacking as before to obtain the original ramp. 
They can use partitioning to create additional ramps with the same 
steepness. For example, partitioning the height and base of the 
original ramp into thirds results in a new ramp with a height of 1 
centimeter and a base of 11/3 centimeters.

3 cm

4 cm 2 cm

1    cm1
2 

Fig. 1.28. Partitioning a ramp to form a new ramp with  
the same steepness

Students can combine iterating and partitioning. For example, 
suppose students are asked to determine the height of a new ramp 
with a base of 5 centimeters and the same steepness as the origi-
nal 3 : 4 ramp. This is a much harder problem for students because 
of the relatively small difference between 4 and 5 centimeters. 
However, they can combine partitioning and iterating to tackle this 
problem. 

Consider the thinking of one middle school student, Marco. He 
realized that the base of the new ramp was 1 centimeter more than 
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the base of the original ramp, so he decided to find the height of a 
ramp that had a base of 1 centimeter and the same steepness as the 
original ramp. He partitioned the 3 : 4 original ramp into 4 equal 
parts to obtain a 3/4 : 1 ramp. He then iterated and stacked the  
3/4  : 1 ramp five times so that the base of the new ramp was 5 centi-
meters. The height new ramp was 15/4, or 33/4 , centimeters, since  
it contained five ramps, each with a height of 3/4 centimeter.

Maintaining a proportional relationship
An important part of developing more sophisticated proportional 
reasoning is the ability to truncate the work of iterating a composed 
unit by using the arithmetic operation of multiplication. To accom-
plish this, students need to move from simply repeating a composed 
unit multiple times until they reach a particular goal to being able 
to anticipate the number of groups that they need.

Consider the work of a middle school student, Andrea. She 
needed to determine the base of a ramp with a height of 27 cen-
timeters and the same steepness as the original ramp—again, the 
ramp with a height of 3 centimeters and a base of 4 centimeters. 
Andrea began by drawing a picture of four stacked ramps like the 
original. She determined the height of the resulting new ramp by 
adding the heights of the stacked ramps (3 + 3 + 3 + 3 = 12 cen-
timeters). Andrea realized that she had not used enough copies of 
the original ramp. She then added another to the stack and again 
added to determine the height of the new ramp (3 + 3 + 3 + 3 + 3 = 
15 centimeters). Andrea continued this process until she drew a new 
ramp with a height of 27 centimeters and a base of 36 centimeters. 
Although she eventually arrived at a correct response, her reason-
ing had not achieved the sophistication demonstrated by David’s 
response, discussed below.

David approached the problem by imagining the height of the 
new ramp (27 centimeters) as made up of 9 groups of 3 centimeters. 
As a result, David could conceive of multiplying the height of the 
original ramp by 9 (3 centimeters 3 9 = 27 centimeters). Because 
David recognized that he needed to iterate the entire 3 : 4 ramp 9 
times, he knew that he should also multiply the base by  
9 (4 centimeters 3 9 = 36 centimeters). 

David’s work is consistent with understanding that multiplica-
tion can abbreviate the longer process of repeated iteration. For stu-
dents like Andrea, a critical part of developing this understanding 
is to have repeated experiences that prompt them to reflect on the 
number of groups that they have formed as a result of iterating. For 
example, Andrea was able to solve the problem through repeated 
iteration and counting. She may have been unaware that she used 
nine copies of the original ramp to create the new ramp. Asking 
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students to reflect on the number of groups (in this instance, ramps) 
that they used is a critical part of their eventually becoming able to 
anticipate the number of groups that they need.

It is possible to generalize the understanding reflected in 
David’s work: If one quantity is multiplied by a particular factor, 
then the other quantity must also be multiplied by the same factor 
to maintain the proportional relationship. Similarly, if one quan-
tity is divided by a factor, then the other quantity must be divided 
by the same factor to maintain the proportional relationship. To 
achieve this understanding, students need to link the act of parti-
tioning to the operation of division and develop an awareness of the 
number of parts that they create when they partition repeatedly.

For example, suppose that a student needs to determine the 
base of a ramp that has a height of 1 centimeter and the same 
steepness as the original 3 : 4 ramp. By imagining 3 centimeters as 
composed of 3 groups of 1 centimeter, the student can conceive of 
partitioning the height of the original ramp into 3 equal groups.  
By linking partitioning with the arithmetic operation of division,  
the student can obtain the desired height by dividing 3 centimeters  
by 3 to get 1 centimeter. Because the height is divided by 3, the 
base must also be divided by 3, and 4 centimeters ÷ 3 is 4/3, or 11/3, 
centimeters. Thus, a ramp with a height of 1 centimeter and a base 
of 11/3 centimeters will have the same steepness as the ramp with a 
height of 3 centimeters and a base of 4 centimeters. Dividing each 
quantity (the height and the base) by the same factor, 3, can also be 
thought of as multiplying each quantity by a factor of 1/3 . In fact, 
understanding that maintaining a proportional relationship involves 
multiplying each quantity by the same factor can be extended to 
include fractional factors.

Reconsider Marco’s reasoning, presented previously. Marco 
needed to find the height of a ramp with a base of 5 centimeters and 
the same steepness as the original 3 : 4 ramp. Marco partitioned the 
3 : 4 ramp into 4 equal parts to obtain a 3/4 : 1 ramp. He then iterat-
ed and stacked the 3/4 : 1 ramp five times so that the base of the new 
ramp was 5 centimeters. As a result, the height of the new ramp was 
15/4, or 33/4, centimeters, since it contained five ramps, each with a 
height of 3/4 centimeters. 

Eventually, Marco should develop his thinking to under-
stand the use of fractional factors in such a context. For example, 
he could begin by realizing that 5 centimeters (the base of the 
new ramp) is 5/4 of 4 centimeters (the base of the original ramp). 
Identifying the factor 5/4 can grow out of Marco’s reflection on his 
use of iterating and partitioning. Marco found 1/4 of 4 centimeters 
by partitioning 4 centimeters into 4 equal parts. Conceptually, this 
work is the same as finding 1/4 3 4 centimeters. Then Marco iterated 
the result 5 times. This activity is the same conceptually as taking 5 
one-fourths of 4 centimeters, which is 5/4 3 4 centimeters. 
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Once a student realizes that 5 centimeters is 5/4 3 4 centime-
ters, he or she can complete the problem by finding 5/4 3 3 cen-
timeters, which is 15/4, or 33/4 , centimeters. In sum, students like 
Marco are close to realizing that they can maintain a proportional 
relationship by multiplying each quantity by the same factor a/b.

Relating the two types of ratios 
The discussion thus far has focused on proportional reasoning strat-
egies that rely on thinking of ratios as composed units, because 
this is usually the easier entry point for middle school students. 
However, it is also important that students learn to work with mul-
tiplicative comparisons and connect these two types of ratios. For 
example, consider the set of heights and lengths (bases) of all of the 
equally steep ramps that have been discussed so far in relation to 
Essential Understanding 7 (see fig. 1.29).

Height  
(cm)

Length of Base  
(cm)

3 4

6 8

9 12

12 16

21 28

27 36

1.5 2
3/4 1

1 4/3

3 3/4 5

Fig. 1.29. Heights and lengths (bases) for a set of equally steep ramps 
(with shaded rows showing the unit ratios) 

In each case, the height is 3/4 of the length of the base, and the 
length of the base is 4/3 times the height. These two ratios, 3/4 and 
4/3, are multiplicative comparisons. To form the ratio 3/4 , students 
can ask, “What part of the length of the base is the height?”  To 
form the ratio 4/3, they can ask, “How many times greater is the 
length of the base than its height?” Using multiplicative compari-
sons is a powerful proportional reasoning strategy. For example, to 
find the length of the base of a ramp that has a height of 16 cen-
timeters and the same steepness as the original 3 : 4 ramp, students 
can simply multiply the height by 4/3 (16 centimeters 3 4/3 = 211/3 



The Big Idea and Essential Understandings 41    

centimeters). Similarly, if they have the length of the base of a ramp 
of this steepness, they can find the height of the ramp simply by 
multiplying the base by 3/4.

It is important for students to connect composed units with 
multiplicative comparisons. Perhaps the easiest way for them to 
see the connection is by looking at either of the unit ratios (shown 
in the shaded rows in fig. 1.29). Consider the connections made by 
Manuel, a seventh grader. Manuel formed a composed unit of 1 cen-
timeter (height) and 4/3 centimeter (length of the base). He iterated 
the 1 : 4/3 ramp to form other ramps of equal steepness. By iterating 
1 : 4/3 twice, he obtained a ramp with a height of 2 centimeters and 
a base of 22/3 centimeters. By iterating 1 : 4/3 three times, he found 
a ramp with a height of 3 centimeters and a base of 4 centimeters. 
When asked for the length of the base of a ramp with a height of 
8 centimeters, Manuel reasoned that a height of 8 centimeters was 
made up of eight groups of 1 centimeter. For each 1 centimeter of 
height, he needed 4/3 centimeters in the base. Because he needed 
eight groups of 4/3 centimeters for the base, he multiplied 8 × 4/3. 
Manuel went on to find the bases of other ramps of equal steepness 
by multiplying the given heights by 4/3. 

Manuel appeared to understand that the base of each of these 
equally steep ramps was 4/3 times as great as its height. This sug-
gests that he formed a multiplicative comparison between the bases 
and heights of the ramps by expanding on his initial use of com-
posed units. This connection between multiplicative comparisons 
and composed units allowed Manuel to write an equation  
to represent the relationship between the height and base of any 
ramp in this “same steepness” family. Specifically, Manuel wrote  
H × 4/3 = L and explained that could find any length (L) of the base 
of any ramp by multiplying its height (H ) by 4/3.
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Essential Understanding 8

A rate is a set of infinitely many equivalent ratios.

This chapter’s discussion of the essential understandings related to 
the big idea of proportional reasoning has moved from the forma-
tion of a ratio to reasoning with two equivalent ratios (a propor-
tion) to the formation of a set of equivalent ratios—a hallmark of 
proportional reasoning. It is important to draw attention to the 
development of a set of equivalent ratios because many textbook 
treatments stop with proportions (two equivalent ratios). As a re-
sult, instruction may leave students without being able to use rea-
soning—as opposed to using often poorly understood procedures—to 
form a collection of equivalent ratios. Another way to say that a 
student has formed a set of infinitely many equivalent ratios is to 
say that he or she has conceived of a rate.

Thompson (1994) advocates this unconventional use of the 
term rate to signify a set of infinitely many equivalent ratios. Two 
other meanings of rate are more common. Rate is often defined as 
a comparison of two quantities of different units (e.g., gallons of 
gas consumed to miles traveled), in contrast to ratio, which is often 
defined as a comparison of two quantities of like units (e.g., feet to 
feet). Rate also is commonly used to refer to a ratio in which one of 
the quantities is time (e.g., miles to hours).

Thompson argues that these definitions locate the distinction 
between ratio and rate in the situation rather than in the way that 
a student conceives of the situation. Furthermore, he argues that 
characterizing a ratio in terms of how one thinks about it (e.g., as 
a multiplicative comparison or as a composed unit) has the advan-
tage of making the “same unit versus different unit” distinction 
unimportant. 

In fact, this chapter has used contexts of both types inter-
changeably. In the ramp context, the units for both base and height 
were the same (e.g., centimeters), but in the speed context, the units 
for distance and time were different (e.g., centimeters and seconds). 
Moreover, Thompson’s use of rate is more consistent with how rate 
is used in advanced mathematical topics. In calculus, the derivative 
of a function at a particular point is conceived as an instantaneous 
rate of change at that point; it does not matter whether the units of 
the two quantities related by the function are the same or not.

For teachers, characterizing rate in terms of one’s thinking 
rather than in terms of features of a situation can provide useful 
language to assess differences in levels of sophistication in students’ 
reasoning. Consider the problem in figure 1.30 about the ratio of  
orange concentrate to water in a “recipe” for orange juice. 
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What is the ratio of orange concentrate to water in 
the orange juice recipe that is shown as a picture?

Fig. 1.30. A problem with a pictured “recipe” for orange juice

Suppose that a student writes “3 : 4.” He or she could conceive 
of the situation in at least these three different ways:

1.   Not as a ratio. The student may have counted 3 cans of 
orange concentrate and 4 cans of water by using only 
whole-number counting skills and then have written 3 : 4 
or 4/3 without forming a ratio conceptually.

2.   As a ratio. The student may have formed a composed unit 
of 3 cans of orange concentrate and 4 cans of water and 
doubled the 3 : 4 unit to determine that a batch of orange 
juice made from 6 cans of orange concentrate and 8 cans of 
water would taste equally orangey. However, the student’s 
reasoning may be limited to thinking about and finding 
easy equivalent ratios—for example, through doubling or 
halving.

3.  As a rate. The student may be able to use proportional rea-
soning to determine the amount of orange concentrate and 
water for any quantity of orange juice of this strength. For 
example, the student may understand that he or she would 
need 51/4 cans of orange concentrate for 7 cans of water, 1 
can of orange concentrate for 11/3 cans of water, 1/3 can of 
orange concentrate for 4/9 can of water, and so on.

Thinking about rate in this manner can help you guard against 
overestimating your students’ proportional reasoning abilities. For 
example, students often show facility in reasoning with halves and 
doubles long before they are able to identify equivalent ratios by 
working with more difficult factors, such as 7/8 or 3/5. When you 
observe students forming “easy” ratios, you may be tempted to attri-
bute more sophisticated proportional reasoning to them than is war-
ranted. Making a distinction between ratio and rate can prompt you 
to assess your students’ level of reasoning by posing problems that 
motivate them to form an extensive set of equivalent ratios, includ-
ing ratios obtained by reasoning with more “difficult” numbers. 
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Essential Understanding 9

Several ways of reasoning, all grounded in sense making, can be 
generalized into algorithms for solving proportion problems

Using and understanding algorithms is an important part of math-
ematics because an algorithm provides a general and efficient way 
to solve an important class of problems. The most popular algorithm 
for tackling proportion problems in which three numbers are given 
and one is missing is the cross-multiplication algorithm. However, 
this algorithm is rarely grounded in sense making for students. In 
fact, sense making about the meaning of the quantities in a real-
world setting is suspended in performing the cross-multiplication 
step of the algorithm. 

Consider the following task: 

The label on a box of cheese crackers tells consumers that 6 crackers 
contain 70 calories. How many calories are in 20 crackers? 

Students can set up a proportion,

Calories 70 x=
Crackers 6 20

and perform cross multiplication to arrive at the equation 6x = 70 3 
20. However, the unit for the product 70 calories 3 20 crackers has 
no meaning, because “calorie-cracker” does not make sense. The unit 
associated with 70 3 20 is not calories per cracker, which would be 
meaningful. Therefore, performing cross multiplication involves mo-
mentarily suspending sense making.

However, alternative solution methods maintain sense making 
and generalize for any values of the quantities. This section presents 
one such method, called the “unit ratio” method, and develops sever-
al associated understandings. In the cracker problem above, the ratio 
of calories to crackers is 70 to 6. Applying Essential Understanding 
5, you can reinterpret the ratio 70 : 6 as the quotient 70 ÷ 6, which 
is approximately 11.67 and represents the number of calories in one 
cracker. Because 20 crackers have 20 times as many calories as one 
cracker, they have approximately 20 × 11.67, or about 233, calories.

This alternative approach involves forming a unit ratio, which 
is the amount of a quantity per one of a second quantity (in this 
example, number of calories per one cracker).  This approach is 
grounded in making sense of the quantities in the situation. But does 
this unit ratio method generalize to all numbers? Reflect 1.7 asks 
you to consider a different problem in the same context but with 
“messier” numbers.

Essential 
Understanding 5

Ratios can be 
meaningfully 

reinterpreted as 
quotients.
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Note that the unit ratio method still works. Because the prob-
lem asks for the number of calories in 11 wheat crackers, it is useful 
to find the number of calories in one cracker. The ratio of calories 
to crackers is 167 : 18. By applying Essential Understanding 5, you 
can reinterpret this ratio as a quotient: 167 ÷ 18 gives the number of 
calories in one cracker, or about 9.3. Because each of the 11 crackers 
has about 9.3 calories, the total number of calories is approximately 
11 3 9.3, or about 102, calories. 

Students often need additional understanding when they tackle 
problems in which the missing value is in the second quantity—in 
this instance, the number of calories rather than the number of 
crackers. Consider the following problem: 

If 6 cheese crackers provide 70 calories, how many crackers will 
provide 300 calories?

Students might start by dividing 70 by 6, in part because dividing 
the bigger number by the smaller number seems natural to them 
from their experiences in elementary school. However, the question 
asks for the number of crackers that someone needs to eat to get 
300 calories. Consequently, students need to determine the number 
of crackers that one should eat to get just 1 calorie. Every 6 crackers 
provide 70 calories, a fact that the ratio 6 : 70 represents. Students 
who have grasped Essential Understanding 5 can reinterpret this 
ratio as 6 ÷ 70 and understand that the quotient is the amount of 
crackers that yields one calorie, or approximately 0.086 of one 
cracker.  Because someone has to eat about 0.086 of a cracker for 
each of 300 calories, the total number of crackers that he or she 
must eat is 300 × 0.086, or about 26 crackers.

Many other ways to solve proportion problems are also 
grounded in sense making. The goal of this section was to illustrate 
one generalizable alternative to the cross-multiplication algorithm 
that preserves sense making. However, before students attempt to 
apply proportional reasoning in any problem context, they need to 
be able to decide whether or not the quantities in the situation are 
in fact related proportionally. Being able to make this determina-
tion depends on understanding the important notion developed in 
Essential Understanding 10.

Reflect 1.7

Suppose that 18 wheat crackers have 167 calories. How many calories are in 11 
crackers? Solve the problem using the unit ratio approach.
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Essential Understanding 10

Superficial cues present in the context of a problem do not provide 
sufficient evidence of proportional relationships between quantities. 

Problem solvers should base their decision to use proportional rea-
soning on the nature of the quantities in a particular situation. Too 
often, however, students rely on the following types of superficial 
cues to decide whether or not a situation involves a proportion: 

• The problem gives 3 numbers, and 1 other number is missing.

• The problem involves key words such as per, rate, or speed. 

• The problem appears in a chapter on ratios and proportions. 

The following tasks (Lamon 1999, p. 223) illustrate these 
points:  

1.  If one football player weighs 225 pounds, then how much 
will three players weigh?

2.  One man can paint the bedroom by himself in 3 hours. How 
long will it take two men to paint the room if both men 
paint at the same pace?

3.  Bob and Marty run laps together because they both run at 
the same speed. Today, Marty started running before Bob 
came out of the locker room. Marty had run 6 laps by the 
time Bob ran 3. How many laps had Marty run by the time 
Bob had run 12?

4.  You put a bucket under a dripping faucet. The bucket had 6 
ounces in it to begin with. You come back after 8 minutes 
and notice that there are now 10 ounces in the bucket. How 
many ounces will be in the bucket after 17 minutes?

If students think that they should set up a proportion whenever 
three numbers are given and one is missing, then they are likely to 
set up a proportion for problem 1: 

1
225

3=
x

.

Solving for x yields 675 lbs. However, the goal is for students to 
use their common sense about the real world before operating with 
the numbers. In this case, it is unlikely that every football player 
weighs 225 pounds. It would be more reasonable to find the weight 
of each player and add all the weights together. The situation 
would call for proportional reasoning if the problem stated that 225 
pounds was an average weight for the football players and called 
for an approximation of the total weight of three players.
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The strategy of setting up a proportion whenever the state-
ment of a task gives three numbers and a fourth number is missing 
is even more problematic in the case of problem 2. Setting up the 
proportion

1
3

2=
x

leads to an incorrect response of 6 hours. In a proportional situa-
tion, two quantities increase (or decrease) together at the same rate. 
To determine if this is happening in a particular situation, problem 
solvers can usefully consider what happens when one quantity in-
creases. In the situation in problem 2, if more people arrive to paint, 
it will actually take less time—not more—to paint the room. Thus, 
the relationship between the number of workers and the amount of 
time it takes to paint the room is not directly proportional.

Without considering the details of a situation, students some-
times set up a proportion when they see terms such as per, rate, or 
speed in a problem statement. In problem 3, students might set up a 
proportion such as

6 3
12x

= ,

leading them to find, incorrectly, that Marty would have completed 
24 laps. 

When two quantities are related proportionally, they are in a 
“many-to-one” relationship that holds across values. For example, 
consider the following proportional situation: 

If 2 bags of topsoil weigh 30 pounds, how much will 3 of these bags 
weigh? 

In this situation, each bag weighs 15 pounds, and this relation-
ship continues for any number of bags. The running context also 
has a “many-to-one” relationship: You can think about Marty as 
having run 2 laps for each lap that Bob ran up to the time when 
Marty had completed 6 laps because 6 = 2 3 3. However, this re-
lationship does not continue. When Marty runs one more lap, so 
does Bob, because Marty and Bob are running at the same speed. 
Consequently, when Marty has run 7 laps, Bob will have run 4 laps 
(and 7 is not 2 3 4). Note that this situation is additive in nature. 
Once Bob has run 3 laps, he needs to run 9 more to complete 12 
laps. Therefore, Marty will have run 6 + 9, or 15, laps when Bob has 
run 12.

Finally, if problem 4 appeared in a chapter on proportional rea-
soning, some students would inappropriately set up the proportion

8
10

17=
x  

in an attempt to solve it. One way to determine whether or not 
quantities are related proportionally is to explore whether doubling 
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both quantities results in the relationship remaining constant. In 
this case, if the time doubles, the water level in the cup does not 
double, because the bucket held some water to start. Thus, the water 
level and the elapsed time are not in a proportional relationship. 
However, a proportional relationship does hold between the change 
in the water level and the change in the time, as chapter 2 will 
discuss.

Conclusion
Proportional reasoning is a milestone in students’ cognitive devel-
opment. An understanding of proportionality develops slowly over 
a number of years. Yet, maturation alone does not ensure the de-
velopment of proportional reasoning. Many adults in our society do 
not reason proportionally. The complexity of proportional reasoning 
is highlighted by the fact that the ability to execute the cross-mul-
tiplication algorithm correctly does not ensure the ability to reason 
proportionally. Furthermore, one who can reason effectively with 
doubles and halves may be unable to reason proportionally with 
more difficult numbers.

Reasoning proportionally involves many understandings, in-
cluding grasping the meaning of a ratio as a multiplicative com-
parison and as a composed unit; making connections among ratios, 
fractions, and quotients; and understanding the ideas involved in 
moving from basic to more sophisticated levels of proportional rea-
soning. Because proportional reasoning is complex, developing the 
big idea and the associated understandings is not easy. It involves 
deepening your own understanding as a teacher, being sensitive to 
the types of reasoning that are most accessible as entry points for 
your students while pushing them to develop more sophisticated 
forms of reasoning, and being aware of typical shifts in students’ 
learning of these ideas. Chapter 3 will address issues of teaching, 
learning, and assessment, but first chapter 2 will make connections 
between the essential understandings of proportional reasoning and 
other mathematical content. Specifically, chapter 2 will show how 
these ideas support a richer exploration of high school content and 
what concepts are critical for students to have developed in elemen-
tary school as prerequisites for the development of proportional 
reasoning in grades 6–8.
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Chapter

THIS chapter considers how teachers can use the essential
 understandings associated with the big idea of ratios, propor-T understandings associated with the big idea of ratios, propor-T

tions, and proportional reasoning to deepen their understanding of 
upper middle school and high school mathematics content related 
to slope, linear functions, and algebraic equations. It then briefly 
discusses the idea that proportional reasoning is at the heart of what 
it means to understand measurement across grade levels. Finally, it 
identifies several foundational ideas related to fractions and mul-
tiplication that elementary school teachers should address because 
they are critical to students’ development of proportional reasoning.

Using the Essential Understandings 
to Reason about Linear Functions, 
Algebraic Equations, and Slope
Teachers who understand the big idea of proportional reasoning 
developed in chapter 1 can draw on the various related essential 
understandings to see familiar concepts in new ways. Consider some 
of the important sense making that can occur when teachers apply 
this new understanding to linear functions, algebraic equations, and 
the concept of slope. 

Linear functions of the form y = y = y mx
Upper middle school and high school students need to understand 
that a linear expression of the form y = y = y mx is a statement of pro-mx is a statement of pro-mx
portionality, with m as an invariant ratio, also called the constant 
of proportionality. Karplus, Pulos, and Stage (1983) characterized 
proportional reasoning as “a term that denotes reasoning in a sys-
tem of two variables between which there exists a linear functional 
relationship” (p. 219). 

Connections: Looking 
Back and Ahead in 
Learning
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Returning to the speed context involving the clown and frog 
presented in chapter 1 can help flesh out the connection between 
proportionality and linearity. Recall that students in one class were 
shown a computer screen with SimCalc Mathworlds software show-
ing two characters—a clown and a frog—with the clown set to walk 
10 centimeters in 4 seconds (see p. 16). Suppose that students have 
used the types of reasoning articulated in chapter 1 to generate dis-
tance and time pairs that represent the same speed as walking 10 
centimeters in 4 seconds. The graph of these data, shown in figure 
2.1, represents infinitely many pairs of time and distance values 
that express the same speed of 2.5 cm/sec. Students can represent 
the distance and time pairs from the table in the figure as a set of 
ordered pairs: {(4, 10), (8, 20), (12, 30), (2, 5), (6, 15), (1, 2.5), (3, 
7.5), (5, 12.5), (2.5, 6.25), (0.4, 1), (4.3, 10.75)}. They can conceive 
of the ordered pairs, in turn, as ratios, applying the idea in Essential 
Understanding 2. They can form ratios as multiplicative compari-
sons by considering how many times greater each y -value is than 
the corresponding x-value. For example, in the ordered pair (4, 10), 
10 is 2.5 times greater than 4. 

Alternatively, students can form ratios as composed units. For 
example, if they form a composed unit from the ordered pair (2, 5), 
they can generate other ordered pairs in the set by operating on 2 : 5. 
For instance, they can obtain the ratio represented by the point (2.5, 
6.25) by partitioning the composed unit 2 : 5 into four equal parts, 
and they can conceive of each part as the composed unit 0.5 : 1.25. 
They can then combine the two ratios 0.5 : 1.25 and 2 : 5 to arrive at 

Essential 
Understanding 2

A ratio is a 
multiplicative 

comparison of two 
quantities, or it is a 

joining of two 
quantities in a 

composed unit.
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Fig. 2.1. Representations of a linear function as a set of equivalent ratios Fig. 2.1. Representations of a linear function as a set of equivalent ratios 
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the ratio 2.5 : 6.25, which they can represent by the point (2.5, 6.25). 
Thus, they can also conceive of the set of ordered pairs representing 
the same speed as an infinite set of equivalent ratios: 

10
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20
8

30
12

5
2

15
6

25
1

25
75
3

125
5

625
25
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Algebraic equations
Another way for students to see the connection between linearity 
and proportionality is by forming an equation that relates time and 
distance values—namely, y = 2.5x, where x represents the elapsed 
time and y represents the distance traveled. Isolating 2.5 algebra-
ically by dividing each side by x yields y/x = 2.5. Students who are 
developing important understanding related to ratios, proportions, 
and proportional reasoning will realize that this equation represents 
the set of equivalent ratios shown above—namely, the set of ratios 
such that each ratio of the y-value to its corresponding x-value is 
equivalent to 2.5.

The equation y = 2.5x can also be interpreted directly in terms 
of ratios. One interpretation is that each y-value is 2.5 times as 
great as its corresponding x-value. Interpreting the equation in this 
way is the same as forming a ratio as a multiplicative comparison 
of y-values to corresponding x-values. A second interpretation of 
the equation y = 2.5x involves seeing 2.5 as the number of centi-
meters that the clown travels in a second. Then the total distance 
traveled is 2.5 centimeters for each second that passes as the clown 
travels. For example, the ordered pair (6, 15) means that after 6 sec-
onds, the clown has traveled 2.5 centimeters for each of 6 seconds, 
which is represented by 2.5 3 6 = 15. Students can develop this  
interpretation from reasoning with composed units. For example, 
partitioning the original composed unit of 10 : 4 into four equal 
parts yields 2.5 centimeters in 1 second for each part. Iterating  
2.5 : 1 six times yields 15 centimeters in 6 seconds. The connection 
between proportionality and linearity emphasizes covariation; the 
quantities of distance and time change continuously and simultane-
ously while preserving the invariant ratio of 2.5 cm/sec. 

Linear functions of the form y = mx + b
Any linear function can be expressed in the form y = mx + b. 
Furthermore, y = mx + b is a statement of proportionality, represent-
ed by y = mx, combined with a vertical translation, represented by 
the addition of b. To help you consider the development of this idea 
in the context of speed, Reflect 2.1 introduces a situation in which 
a rabbit is already a certain distance from home when it begins 
walking.
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One way to approach this situation is to consider the distance 
that the rabbit travels in the first 3 seconds. This distance is the dif-
ference between the rabbit’s distance from home after 3 seconds 
and its initial distance from home—namely, 11.5 – 4, or 7.5, centi-
meters. To determine the rabbit’s speed, you can form a composed 
unit of the distance traveled to the elapsed time, or 7.5 : 3. You can 
find the number of centimeters traveled in 1 second by partitioning 
7.5 : 3 into 3 equal parts. Splitting 7.5 centimeters into 3 equal parts 
gives 2.5 centimeters in each part, and splitting 3 seconds into 3 
equal parts gives 1 second in each part. Thus, the rabbit travels 2.5 
centimeters in 1 second. You can use this unit ratio to determine 
how far the rabbit is from home over time. After 4 seconds, it is an 
additional 2.5 centimeters from home, or 11.5 + 2.5, or 14, centime-
ters from home, as figure 2.2 shows.

Continuing in this manner enables you to produce a table of 
values such as that shown in figure 2.3. The figure shows a graph 
of these values (line B) on the same Cartesian grid as the graph of y 
= 2.5 x (line A), which shows the distance and time the distance and 
time values for the clown’s walking in the earlier situation. Showing 
the graphs together highlights important connections and differences 
between the two functions. First, line B is a vertical translation of line 
A by 4 units. Hence, because the equation for line A is y = 2.5 x, the 
equation for line B is y = 2.5x + 4. For any given x-value, the cor-
responding y-value for line B is 4 greater than the y-value for line A. 
For instance, when x = 4 (in other words, 4 seconds have passed), the 
rabbit in the situation represented by line A has traveled 10 centime-
ters (4 3 2.5 = 10) and is 10 centimeters from home. After 4 seconds, 
the rabbit in the situation represented by line B has also traveled 10 
cm (4 3 2.5) but is 14 centimeters from home (4 3 2.5 + 4).

Reflect 2.1

Suppose a rabbit is 4 centimeters from home when it begins walking, and after 3 
seconds it is 11.5 centimeters from home. Generate several “distance from home” 
and elapsed time values for other parts of the rabbit’s journey so that the rabbit 
travels the same speed throughout its journey.

Fig. 2.2. A rabbit begins walking 4 centimeters from home and maintains a constant speed.Fig. 2.2. A rabbit begins walking 4 centimeters from home and maintains a constant speed.

Home 2 4cm 6 8 12
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Fig. 2.3. A table and a corresponding graph (line B) for a rabbit that starts walkingFig. 2.3. A table and a corresponding graph (line B) for a rabbit that starts walkingFig. 2.3. A table and a corresponding graph (line B) for a rabbit that starts walking
4 centimeters from home and maintains a constant speed4 centimeters from home and maintains a constant speed4 centimeters from home and maintains a constant speed

LINE B LINE A

20

18

16

14

12

10

8

6

4

2

21 3 4 5 6 7 8 9 10
D

is
ta

n
ce

 f
ro

m
 H

o
m

e 
(c

m
)

Elapsed Time (sec)

(0.4)
(1,2.5)

(2,5)

(1,6.5) (3,75)

(2,9) (4,10)

(3,11.5) (5,12.5)

(4,14) (6,15)

(5,16.5)

(6,19)

Elapsed 
Time
(sec)

Distance
from Home 

(cm)

0 4

3 11.5

1 6.5

4 14

5 16.5

6 19

2 9

8 24

2.5 10.25

 

Examining the graphs helps to point out a second important 
difference between the two functions. The relationship represented 
by line A is proportional, but the relationship represented by line B 
is not. Specifically, you can apply Essential Understanding 7 from 
chapter 1 to see that any two ordered pairs on line A are related by 
some factor a/b . For example, the ordered pairs (8, 20) and (4, 10) 
on line A are related by a factor of 2. Both x- and y-coordinates of 
the point (8, 20) on line A are double the corresponding coordinates 
for (4, 10). This doubling relationship does not hold for the points 
on line B. For example, the x-coordinate of (8, 24) is double the 
x-coordinate of (4, 14), but the y-coordinates do not show this rela-
tionship: 24 is not double 14. 

Finally, you can see every point on line A as representing the 
rabbit’s speed simply by forming a ratio of the y- value to its cor-
responding x-value. You cannot do this in the case of line B, where 
you need two points to determine the rabbit’s speed. The next sec-
tion, on slope, elaborates this point. 

Slope 
The slope of a function is the rate of change in one quantity rela-
tive to the change of another quantity, where the two quantities 
related by the function covary. Recall that Essential Understanding 
8 expresses a rate as a set of equivalent ratios. The slope formula is 
typically expressed as  

m
y y
x x

= y y−y y
x x−x x

2 1y y2 1y y

2 1x x2 1x x

Essential 
Understanding 7 

Proportional reason-
ing is complex and 
involves understand-
ing that—
•   equivalent ratios 

can be created 
by iterating and/
or partitioning a 
composed unit;

•   if one quantity in a 
ratio is multiplied 
or divided by a 
particular factor, 
then the other 
quantity must be 
multiplied or di-
vided by the same 
factor to maintain 
the proportional 
relationship; and

•   the two types of 
ratios—composed 
units and multi-
plicative compari-
sons—are related.
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for any two points (x1, y1) and (x 2, y2) on the line, or, more colloqui-
ally, as 

m
riseriseri
run

= .
 

However, it is not necessary to use the slope formula to deter-
mine the slope of a line of the form y = mx. For example, you can 
find the slope of line A in figure 2.3 by forming a ratio of the y-val-
ue to its corresponding x-value for any point on the line. You can 
use the point (4, 10) to form the ratio 10 : 4, or 10/4; you can use the 
point (8, 20) to form the ratio 20 : 8, or 20/8 ; and so on, producing a 
set of equivalent ratios. Although the conventional representation 
of the slope of this function is 2.5, any member of the set can repre-
sent the slope, since all values are equivalent. In fact, you can think 
of line A itself as representing the slope, since the slope of the line 
is a set of infinitely many equivalent ratios—that is, slope is a rate.

Finding differences of x- and y-values as the slope formula 
directs is necessary only for lines of the form y = mx + b. Consider 
how informal reasoning about the rabbit’s walking situation, mod-
eled by line B in figure 2.3, connects with the slope formula. In 
this “head start” situation, the slope of the function is a measure of 
the rabbit’s speed. Speed is a ratio of distance traveled to the cor-
responding amount of time elapsed. Select any two points on the 
graph of line B—say, (4, 14) and (6, 19). The first point indicates 
that the rabbit was 14 centimeters from home after 4 seconds; the 
second point indicates that it was 19 centimeters from home after 6 
seconds. The elapsed time is 6 – 4, or 2, seconds. During these 
two seconds, the rabbit traveled 19 – 14, or 5, centimeters. Thus, 
the rabbit’s speed is the ratio 5 centimeters to 2 seconds, which is 
equivalent to 2.5 cm/sec.  This sensible informal approach can be 
seen as an application of the slope formula:  

m
y y
x x

= y y−y y
x x−x x

= =2 1y y2 1y y

2 1x x2 1x x
5
2

( )−( )−19( )19 14( )14−14−( )−14−
( )6 4( )6 4−6 4−( )−6 4−

cm
sec

cm
sec  

= 2.5 cm/sec  

Contrasting examples briefly show two students’ reasoning 
about slope when one of them does and the other does not con-
nect linearity and proportionality. Chanise and Hector, both seventh 
graders, had been working with a context in which water was being 
pumped into a swimming pool. After having made sense of the con-
text, they were shown the graph in figure 2.4. The graph indicates 
that the pool held 6 gallons of water after 3 minutes, 10 gallons 
after 5 minutes, and 18 gallons after 9 minutes. The students were 
asked to find the slope of the line. Chanise correctly recorded the 
slope formula as 

m
riseriseri
run

= .

She then drew a “stair step” beneath the line, connecting the 
points (0, 0) and (3, 6). However, Chanise ignored the water and time 

Essential 
Understanding 8

A rate is a set of 
infinitely many 

equivalent ratios.



Connections: Looking Back and Ahead in Learning 55    

quantities when determining the “rise” and “run.” Specifically, she 
counted 3 boxes along the base of the stair step and 2 boxes along 
the side of the stair step and recorded the slope as 2/3. Chanise re-
peated this procedure, using the points (3, 6) and (5, 10). She found 
the run by counting 2 boxes along the base of her second stair step, 
and she apparently determined the rise by rounding the number 
of boxes along the side of the stair step to 1 box. She recorded a 
second slope of 1/2. Chanise expressed frustration that the slope 
didn’t work “because it has different amounts on the sides and 
the rise and the runs,” and she concluded that the slope for this 
line changed. When asked to draw a line with a slope that did not 
change, Chanise plotted a point on the graph, went up 4 and over 2, 
plotted a new point, went up 4 and over 2, plotted a point, and then 
connected the points. This process suggests that she did not con-
nect linearity and proportionality. Instead, she apparently associ-
ated slope with the idea of stairs of identical size rather than with a 
ratio that is invariant despite changes in particular “rise” and “run” 
values.
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Fig. 2.4. Authors’ illustration of one student’s work to determine the 
slope of a line

In contrast, Hector correctly responded that the slope is 2. 
Although Hector had not yet been taught the slope formula, he 
was able to reason appropriately about slope by thinking about the 
relationship between the amount of water that had been pumped 
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into the pool and the elapsed time, as indicated by the points on 
the graph. For example, when asked to write an equation, Hector 
wrote T 3 2 = G, explaining that multiplying the time by 2 gives 
the number of gallons of water. When asked about the meaning 
of the 2, he replied that the 2 “would represent the speed…, or like 
how much you would get for every, for every 1 minute there would 
be like 2 gallons.” He then used the equation to predict, correctly, 
the amount of water in the pool after 19 minutes, after 1 hour, and 
after 6.5 minutes. Hector’s reasoning suggests a focus on a relation-
ship between the amount of water and the elapsed time, reflecting 
both an interpretation of slope as a measure of how fast the pump is 
pumping and some sense of the invariance of the pumping rate of 2 
gallons per minute.

Grounding Measurement in  
Proportional Reasoning
Proportional reasoning is central to an understanding of measure-
ment (Lehrer 2003). Thompson and Saldanha (2003) point to the 
importance of conceiving of a measure as a ratio comparison rather 
than as a “number of things.” An illustration of a measure as a 
“number of things” is thinking of 3 inches as three little “lengths,” 
called “inches.” In contrast, conceiving of a measure as a ratio 
comparison involves thinking of 3 inches as 3 times the length of 1 
inch. 

The formation of a multiplicative comparison between the 
length of the object to be measured and the particular standard of 
measurement is critical in situations in which the measurement unit 
changes. Suppose that you measure the height of a man as 6 feet. 
As a ratio comparison, the man’s height is 6 times a 1-foot unit. If 
you change the unit that you use to measure the man’s height from 
feet to inches, then you must recognize that the ratio of 1 foot to 
1 inch is 12 : 1 (i.e., one foot is 12 times greater than 1 inch), and 
that this ratio is invariant across the change in measurement units. 
Because the man’s height is 6 times greater than 1 foot, and 1 foot 
is 12 times greater than 1 inch, the height of the man is 6 3 12, or 
72, times greater than 1 inch. Thus, the man’s height is 72 inches.

This way of thinking about measurement is proportional in na-
ture. In contrast, Thompson (1994) recounts a fifth grader’s response 
to the question of whether the speed of a car could be measured in 
miles per century. The student responded, “No, because you would 
die, or the car would rust away before a century” (p. 179). The  
    student’s reply suggests that he or she confused the thing to be 
measured with its measurement and did not conceive of measure as 
a ratio comparison.
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Foundations of Proportional  
Reasoning in the Elementary Grades
When work in elementary school allows students to develop deep 
and flexible meanings for numbers and operations (especially for 
fractions and multiplication), they have important foundations on 
which to build an understanding of ratios, proportions, and propor-
tional reasoning in the middle grades. 

Building on the meaning of fractions
As a prerequisite for developing proportional reasoning, students 
need to be able to conceive of a fraction such as 2/3 as “2 one-
thirds.” Stated generally, the fraction a/b is “a one-bths.” However, 
elementary school students often learn to think of a fraction such 
as 2/3 only as “2 parts out of 3 parts.” When students have only 
an “out of” conception of fractions, they often have difficulty in-
terpreting improper fractions. For example, they may claim that 
4/3 doesn’t make sense, because “you can’t have four things out of 
three.” In contrast, if 4/3 means “4 one-thirds,” then it does make 
sense, because someone can have any number of one-thirds. For 
example, someone who has 6 one-thirds can group 3 one-thirds to-
gether twice, making two wholes.

Interpreting the fraction a/b as “a one-bths” rather than as “a 
out of b” is central to forming a ratio as a multiplicative compari-
son. For example, forming a multiplicative comparison of 7 to 3 
entails determining how many times greater 7 is than 3. Because 
this is a difficult comparison, think instead about comparing 7 to 1. 
Obviously 7 is 7 times greater than 1. However, 1 is also 1/3 of 3 (see 
fig. 2.5). Thus, 7 is 7 times greater than 1/3 of 3. To restate, 7 is 7 
one-thirds of 3. This is the same as saying that 7 is 7/3 of 3, since 7/3 
means 7 one-thirds. In sum, one way to form a multiplicative com-
parison between 7 and 3 (i.e., to reason that 7 is 7/3 times greater 
than 3) relies on an understanding of 7/3 as 7 one-thirds.

3 wholes

1/3 of 3

7 one-thirds of 3,
which is the same
as 7/3 of 3

Fig. 2.5. Interpreting 7/3 as 7 one-thirds to show that 7 is 7/3 of 3

Prerequisite fraction knowledge supports students’ understand-
ing of another essential understanding of proportionality—namely, 
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Essential Understanding 6, which indicates that a proportion is a 
relationship of equality between two ratios. In other words, some-
thing is invariant in a proportional relationship. Elementary school 
teachers can promote students’ understanding of the idea of invari-
ance by helping the students explore ways of representing a par-
ticular amount with different fractions. For example, consider the 
purple region in figure 2.6. You could name this region by at least 
three different fractions—as 1/4 of 1, 1/8 of 2, and 1/3 of 3/4—as illus-
trated in the figure. Thus, a fraction is not an amount; a fraction is 
a relationship or multiplicative comparison between two quantities. 
Furthermore, something is invariant across these three expressions: 
each represents the ratio of 1 to 4.

Let be 1 whole.

If is compared to then is 1/4 of 1 whole.

If is compared to the gray part of then is 1/3 of 3/4 (of 1 whole).

If is compared to then is 1/8 of 2 wholes.

Fig. 2.6. Different fractions can represent the purple region.

Building on the meaning of multiplication
Just as certain conceptions of fractions are more powerful than 
others for proportional reasoning, particular ways of thinking about 
multiplication aid in the development of proportional reasoning. In 
particular, a conception of multiplication that extends beyond that 
of repeated addition is critical to proportional reasoning. If students 
interpret multiplication as repeated addition, then they will think 
that 5 3 6 means 6 + 6 + 6 + 6 + 6, or “add 6 five times.” Research 
shows that understanding multiplication only as repeated addition 
can lead to conceptual obstacles for students (Steffe 1994). For ex-
ample, it doesn’t make sense to interpret 1/2 3 6 as “add 6 one-half 
a time” or to interpret 52/3 3 6 as “add 6 five and two-thirds times.” 
By adopting a different interpretation of 5 3 6 as “five 6s” or “five 
groups of 6,” students can interpret 52/3 3 6 meaningfully as “five 
and two-thirds 6s,” or “five groups of 6 and two-thirds of a group of 
6.” Five 6s is 30, and two-thirds of 6 is twice one-third of 6, which 
is twice 2, or 4. Therefore, 52/3 3 6 = 34. This thinking is justified 
by the distributive property: (5 +2/3) 3 6 = (5 × 6) + (2/3 3 6).

Essential 
Understanding 6

A proportion is a 
relationship of 

equality between 
two ratios. In a 

proportion, the ratio 
of two quantities 

remains constant as 
the corresponding 

values of the 
quantities change.
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The “groups of” conception of multiplication involves another 
important conceptual distinction from that of multiplication as re-
peated addition. In repeated addition, students deal only with units 
of one. In the “groups of” conception, multiplication involves the 
coordination of units of units (Clark and Kamii 1996), an activity 
that represents an important conceptual achievement for students. 
This thinking involves seeing proportionality in multiplication. 
For example, if students see 5 × 6 as repeated addition, they then 
combine units of one successively: 6 ones plus 6 more ones is 12 
ones, plus 6 more ones gives 18 ones, and so on until 30 ones. In 
contrast, 5 × 6 can be conceived as 5 sixes (see fig. 2.7). At the top 
level are five units, each consisting of a six-unit. At the next level, 
a six-unit is a grouping that can be broken apart into six ones or 
packed back up again into one six. At the bottom level are the 30 
ones.

5  6 is conceived of as five groups of some amount.

Each 6–unit consists of 6 ones; 5  6 is 30 ones.

5  6

5 x 6 is five groups, each consisting of a 6-unit.

Fig. 2.7. The “groups of” interpretation of multiplication in 
 the case of 5 3 6

The “groups of” conception of multiplication is important for 
proportional reasoning. In the case of 5 times a number p, for ex-
ample, students can think of each of the 5 groups at the top level 
(as in fig. 2.7) with the groups being of any size. For example,  
5 3 4 means 5 groups of 4; 5 3 23/7 means 5 groups of 23/7; and  
5 3 p means 5 groups of p. Students can interpret 5 3 6 as a 
quantity that is 5 times greater than 6. They can see that converse-
ly, 6 is 1/5 of the product 5 3 6. Similarly, they can understand that 
5p represents an amount that is 5 times greater than the amount 
represented by p and that p is 1/5 of the product 5p (Thompson and 
Saldanha 2003). 

This thinking helps students interpret symbolic expressions in 
algebra. For example, they can interpret the linear function y = 2.5x 
as follows: 2.5x represents an amount that is 2.5 times greater than 
the amount represented by x. This is a statement of proportional 
reasoning. Because y is equivalent to 2.5x, the “groups of” interpre-
tation of multiplication allows students to form a ratio as a multi-
plicative comparison between corresponding y- and x-values.
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Conclusion 
Proportional reasoning is linked conceptually to a number of el-
ementary, middle, and high school topics. Proportionality lies at 
the heart of understanding slope and linear functions, as well as 
measurement. Furthermore, reasoning proportionally depends on the 
meaning that one develops for numbers and operations in elemen-
tary school. This chapter has articulated the importance of interpret-
ing a fraction a/b as a one-bths and of understanding the “groups 
of” interpretation of multiplication. Both have implications for the 
development of proportional reasoning. 
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Chapter

Challenges: Learning, 
Teaching, and Assessing
THE development of proportional reasoning is an extended pro-

cess that takes students through necessary transitions in their 
thinking. This chapter first discusses these steps in students’ learn-
ing and suggests teaching approaches to help students through 
them. A comprehensive understanding of your students’ path to 
proportional reasoning can allow you to build assessment into the 
process in a natural way. The remainder of the chapter discusses the 
role of assessment, detailing problem types and ways of assessing 
various levels of proportional reasoning. 

Helping Students Make Transitions to 
Become Proportional Reasoners
Learning to reason proportionally happens slowly, over time. 
Students make multiple shifts in their thinking as they become in-
creasingly adept at forming ratios, reasoning with proportions, and 
creating and understanding rates. The discussion that follows out-
lines four important transitions that students make as they develop 
proportional reasoning, and it details ways to negotiate these shifts 
and evaluate your students’ current understanding.

Shift 1—From one quantity to two
Before students are able to reason with ratios, they typically focus 
on just one quantity. To help students make the crucial transition to 
realizing that they need to account for two quantities at the same 
time, you can introduce problems that motivate them to coordinate 
two quantities. Figure 3.1 shows an example of a complex quanti-
tative situation (Ellis 2007) that calls on students to attend to two 
quantities in the process of isolating an attribute. Reflect 3.1 invites 
you to solve this problem for yourself.

Shift 1

Students need to 
make a transition 
from focusing on 
only one quantity to 
realizing that two 
quantities are 
important.
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Connected Gears Problem

Say you have a small gear with 8 teeth connected to a 
big gear with 12 teeth. 

1.  If the small gear turns clockwise, which direction does the big 
gear turn? Why?

2.  If you turn the small gear a certain number of times, does the big 
gear turn more revolutions, fewer, or the same amount? How can 
you tell?

3.  Find a way to keep track of how many revolutions the small gear 
makes. Find a way to keep track of how many revolutions the big 
gear makes. How can you keep track of both at the same time?

Fig. 3.1. A problem involving two connected gears

One group of seventh-grade students solved this problem by 
working physically with gears (Ellis 2007). They quickly figured 
out that the rotations of one gear depended on the rotations of the 
other. Larissa explained, “Whenever this [the small gear] is spin-
ning, this one [the big gear] has to be spinning, because this one 
[the small gear] is in total control of the other one.” The attribute 
involved in this problem is often called the gear ratio. After find-
ing answers to parts 1 and 2, the students decided to place a sticker 
on one of the teeth of the big gear and another sticker on one of 
the teeth of the small gear. The students lined up the stickers, and 

Reflect 3.1

Solve the Connected Gears problem in figure 3.1. 

a. What attribute is involved in this problem? 

b.  What difficulties would you anticipate that your students would experience 
with the problem?

Teaching Tip 

To help your students 
make Shift 1, pose 

problems that 
motivate them to 

isolate an attribute 
in a complex 
quantitative 

situation.

pit
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rotated the gears until the stickers matched up again. This happened 
after the big gear had turned 2 times and the small gear had turned 
3 times. 

Shift 2—From additive to multiplicative 
comparisons
How the seventh graders in the example above compared the rota-
tions of the two gears in the Connected Gears problem indicates 
whether they had made the second transition toward proportional 
reasoning. A student named Dani compared the rotations of the two 
gears in this way:

If you count this one [the small gear], and it’s gonna go 3 times, it’s 
gonna go, let’s see, 1, 2, 3. This one [the big gear], it’s gonna end 
up, it’s gonna meet again. This one’s only gonna go 2 times, and this 
one’s gonna go 3…. Or another way is you could do S – 1 = B.

In writing S – 1 = B, Dani made an additive comparison between 
the rotations of the two gears, instead of a multiplicative compari-
son. Comparing additively is natural for students who are not used 
to reasoning with ratios. In fact, the shift from additive reason-
ing to multiplicative reasoning is another important transition for 
students.

One way to help students make this transition from addi-
tive comparisons to ratios is to pose problems like the Connected 
Gears problem, which encourages them to take note of more than 
one instance of the same phenomenon. Furthermore, you can pose 
questions that motivate students to develop multiple ratios. In the 
classroom discussed above, the teacher anticipated that the students 
might compare the rotations additively and consequently prepared 
this follow-up question:

You found out that when the small gear turns 3 times, the big gear 
turns 2 times. What are some other rotation pairs for the gears?

By assessing your students’ current understanding and anticipat-
ing potential difficulties that they might experience, you can design 
tasks intended to help them develop a deeper understanding of pro-
portional situations.

In response to the teacher’s question, Dani and her classmates 
continued to rotate the gears. The students observed that the stick-
ers matched up again when the big gear had turned 4 times and the 
small gear had turned 6 times, and again when the big gear had 
turned 6 times and the small gear had turned 9 times. Ultimately, 
they made a table like that shown in figure 3.2 to represent the 
rotation pairs for gear A (small) and gear B (big), beginning with 
the smallest pair (3, 2) and doubling it again and again.

Teaching Tip 

To help your 
students make Shift 
2, gauge their cur-
rent proportional 
reasoning and create 
appropriate learning 
situations that will 
help them develop 
more sophisticated 
understanding.
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Shift 2 

Students need to 
make a transition 
from making an 
additive comparison 
to forming a ratio 
between two 
quantities.
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Gear A
(Small)

Gear B
(Big)

3 2

6 4

12 8

24 16

48 32

96 64

192 128

Fig. 3.2. Numbers of rotations necessary for tagged teeth in  
two gears to realign

As students make the transition from reasoning additively, 
they may at first create composed units rather than multiplica-
tive comparisons. For example, when responding to the teacher’s 
question about other rotation pairs for the gears, Dora offered this 
explanation:

If you take, ’cause there’s 8 teeth on one and 12 teeth on the other, 
you can just like go on forever and find the multiples of 8 and 12.  
If, you can get, the small one turns 3 and the big one turns 2, the 
small 6, the big 4, 12 and 8, 24 and 16, 48 and 32, 96 and 64, 192 
and 128.

Dora joined two quantities—the 3 rotations of the small gear and the 
2 rotations of the large gear—into the composed unit 3 : 2. She then 
iterated the 3 : 2 unit by multiplying both quantities by 2 to main-
tain the ratio relationship. 

Consider another example of a problem that encourages stu-
dents to begin to iterate in this way:

The scale on a map indicates that 10 centimeters represents an ac-
tual distance of 4 miles. Find as many different map-distance and 
actual-distance pairs as you can. 

Although doubling may be natural for many students, iterating or 
multiplying by other numbers may not be as easy. Likewise, stu-
dents may need help in partitioning a composed unit into parts 
other than halves. You can ask questions that encourage students to 
create new composed units involving smaller numbers. For instance, 
suppose that a student who is working with the map scale in the 
problem has developed the composed unit 10 centimeters : 4 miles 
and can iterate that unit to create many other same-scale units, 
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such as 20 centimeters and 8 miles, 50 centimeters and 20 miles, 
and so on. You could ask the student to find some same-scale pairs 
in which the numbers of centimeters and miles are smaller than in 
the original “10 centimeter : 4 mile” unit.

Another strategy for helping students expand their ability to 
partition a composed unit is to encourage them to draw pictures.  
For example, you could tell your students that 18 centimeters on a 
particular map represents an actual distance of 15 miles. You could 
ask the students to draw a picture to represent the unit “18 centi-
meters : 15 miles,” as in figure 3.3, and then ask them to complete 
tasks (a) and (b) in the figure, showing 1/3 of the journey, and giving 
the measurement of that distance, both on the map and in real life. 

On a city center map, 18 centimeters represents an actual distance 
of 15 miles:

18 cm

15 miles

a. Show 1/3  of the distance.

b.  What is 1/3 of the distance in centimeters on the map and in 
actual miles?

Fig. 3.3. A problem motivating students to partition a composed unit 

It is easy to overestimate students’ proportional reasoning 
abilities, especially if you assign problems with simple numbers. 
Students typically develop the ability to do basic iterating and par-
titioning, such as halving and doubling, early on. Although they 
may be able to solve simple introductory problems, they are likely 
to need additional practice with a variety of different problems to 
develop more sophisticated iterating and partitioning strategies. By 
posing the types of problems illustrated here, you can help your 
students develop the ability to iterate and partition in ways that 
might not have occurred to them naturally, without asking them to 
memorize algorithms that they might not be ready to make sense of 
at this point. In this way, you can scaffold their understanding of 
proportionality.

In everyday life, the term scaffold usually describes a struc-
ture erected around the outside of a building under construction 
for the purpose of supporting workers as they build. The key to the 
pedagogical meaning of scaffold is the idea of support—you scaf-
fold instruction by supporting students’ efforts without solving the 
problem for them or simplifying it so much that solving it becomes 
all but effortless.

Teaching Tip 

Scaffold students’ 
progress as you offer 
them opportunities 
to engage in mathe-
matical challenges 
that will facilitate 
their transition to 
more sophisticated 
levels of proportional 
reasoning.

pit
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It is often tempting to provide too much help when students 
struggle with ratio and proportion problems, thus removing their 
opportunities for genuine engagement with the mathematics. For 
example, consider the following problem: 

Heart A beats 15 times in 8 seconds, and heart B beats 38 times in 
20 seconds. Which heart is beating faster, A or B, or do they both 
beat at the same pace?

The discussion that follows presents two different dialogues 
between a teacher and a student working on the problem. The dia-
logues are based on an unpublished, small-scale study and reflect 
the general tone and substance of the interactions, although they 
are not direct transcripts. 

Student: I don’t know how to solve this problem. I’m stuck.

Teacher: How can you compare two heart rates?

Student: I don’t know.

Teacher:  Think of other rates you’ve heard of before. What 
are some rates you know of?

Student: Well … there’s miles per hour.

Teacher: Good. What makes that a rate?

Student: Because it has a per.

Teacher:  Another way of saying that is because it’s “per 
one.” How many miles you travel in one hour. So 
how can you turn this into a rate?

Student: Find a “per one”?

Teacher:  Good. So do you think it should be beats per min-
ute or minutes per beat?

Student: Beats per minute.

Teacher:  Okay, so divide to see how many beats per minute 
each heart will give you.

Reflect 3.2 asks you to evaluate the teacher’s handling of the vari-
ous “teachable moments” in this scenario.

Reflect 3.2

Consider the dialogue above in which the student struggles to determine which 
heart is beating faster.

a.  Do you think the teacher provides the student with sufficiently rich problem-
solving opportunities?  

b. In what ways might you intervene differently with your own students?
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Do you think the teacher helps the student too much? Are you 
nevertheless unsure about how you could manage the dialogue dif-
ferently? Consider the following alternative scenario, in which the 
teacher scaffolds the student’s thinking but deliberately avoids solv-
ing the problem for her: 

Student: I don’t know how to solve this problem. I’m stuck.

Teacher: What’s the problem asking you to do?

Student: Figure out which heart is faster.

Teacher: Okay, so what does “faster” mean to you?

Student: Whichever heart beats quicker … has more beats.

Teacher:  Okay, … so does that help you answer the 
question?

Student:  Well, B gives 38 beats, but it takes more time—20 
seconds instead of 8.

Teacher: Why does that matter?

Student:  How many seconds it takes matters too.  That’s 
why I’m stuck.

Teacher: Ah, okay.  So beats and seconds matter?

Student: Yeah.

Teacher:  So you have A that gives 15 beats in 8 seconds, 
and B that gives 38 beats in 20 seconds.  Can you 
figure out a way to compare those two?

Student:   I can’t really do it, because even though 38 is more 
than 15, 20 is also more than 8.

Teacher:  Let me give you a different problem. Say that A 
gives 15 beats in 8 seconds, but B gives 20 beats 
in 16 seconds.  Which heart beats faster?

Student: Hmmm… [Starts to write].

Teacher: I’ll leave you to work on this for a while.

…

Teacher: So what did you figure out?

Student:  Well, this one was pretty easy because if A beats 
15 in 8 seconds, you can just multiply that by 2 
and get 30 beats in 16 seconds. That’s more than 
20 beats in 16 seconds, so A has to be faster.

Teacher:  Okay, so it looks like you multiplied A by 2. Why 
did you do that?

Student: Because then I have the same number of seconds.

Teacher: Why is that important?
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Student:  Because if the time is the same, then I can just see 
which heart had more beats in the same amount of 
time.

Teacher:  So is there a way you could do that to solve the 
original problem?

Student:  Make the time the same?  I don’t know, because 
the numbers don’t work out very well.

Teacher:  Why don’t you try it out—see what you can come 
up with.  I’ll come back in a little while to see how 
you’re doing.

Imagine what might have happened next: the student might 
have taken the 15 : 8 ratio and multiplied it by 2 to get 30 : 16. She 
might then have tried to compare 30 : 16 to 38 : 20. Suppose that 
she was still unable to tell which heart beats faster. She might then 
have realized that 20 seconds is 4 more than 16 seconds and that 
she could halve the 15 : 8 ratio to get 7.5 : 4. She might then have 
added 30 beats and 7.5 beats, and 16 seconds and 4 seconds, to ob-
tain 37.5 beats in 20 seconds. Once she had determined that heart 
A gives 37.5 beats in 20 seconds and heart B gives 38 beats in the 
same amount of time, she could then conclude that heart B beats 
faster.

In this second scenario, the teacher allows the student to 
struggle with how to determine which heart beats faster. The student 
figures out that she has to take into account both seconds and beats 
in some way. At this stage in her development, it might not be clear 
to her that she can compare either the number of seconds for the 
same number of beats or the number of beats for the same number 
of seconds. 

Students do not fully understand proportions until their think-
ing includes reversibility, which involves conceiving of a ratio in 
a way that allows for predicting with both quantities—not just one. 
An appropriate follow-up would be to provide problems in which 
it is easy to make the number of beats equal but difficult to make 
the number of seconds equal. This will help you determine whether 
the student realizes that he or she can compare either the number 
of beats when the time is the same or the time when the number of 
beats is the same.

The student in the second dialogue had the opportunity to de-
velop a strategy based on halving and doubling to compare the two 
heart rates. This type of basic iterating and partitioning might be 
a necessary stage for the student before she is ready to understand 
why a strategy relying on a unit ratio would work. In follow-up 
problems, you can provide numbers that encourage the student to 
go beyond doubling and halving, perhaps taking thirds, fifths, or 
other fractions of the beats : second pairs. Ultimately, when the  
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student develops facility in using a variety of “building-up” strate-
gies, you can introduce problems with numbers that are relatively 
prime to encourage a unit ratio strategy. For instance, you can 
modify the heart problem as follows: 

Heart C beats 12 times in 17 seconds, and heart D beats 13 times 
in 18 seconds. Which heart is beating faster, C or D, or do they both 
beat at the same pace?

By allowing your students to struggle as they compare rates, to 
work on a variety of proportional-reasoning strategies, and to slow-
ly develop an understanding of the need for a unit ratio strategy, 
you can help them build a flexible knowledge of ratios. 

Shift 3—From composed-unit strategies to 
multiplicative comparisons

Although students may develop facility with proportional situations 
by iterating, partitioning, and using other building-up strategies 
with composed units, they also need to be able to compare quanti-
ties multiplicatively, using a crucial part of Essential Understanding 
2 related to ratios: “A ratio is a multiplicative comparison of two 
quantities.” Mastering this important skill allows students to make 
another shift toward proportional reasoning.

This shift may take time, since many students find working 
with composed units more natural than forming multiplicative 
comparisons. For instance, the middle school students who worked 
with the problem of the two interlocking gears solved the following 
problem in the same context: 

If Gear A has 8 teeth and gear B has 12 teeth, and gear A turns 96 
times, how many times will gear B turn? 

The students’ solution process may seem cumbersome. Dani 
explained her solution as follows: “We know that A turns 3 times 
when B turns twice. So we can take 3 : 2 and repeat it. 3 : 2, 6 : 4, 
12 : 8, 24 : 16, 48 : 32, 96 : 64. So B turned 64 times.” Although sim-
ply multiplying 96 by 2/3 would be much faster, Dani probably had 
not yet thought of gear B as turning 2/3 as many times as gear A. 
That is, she had not compared the rotations of gear A and gear B 
multiplicatively.

Even though Dani’s method of iterating may seem unnecessar-
ily time-consuming, it could be the very process that she needs to 
go through—perhaps many times—before she feels comfortable mov-
ing on to other strategies. With this in mind, consider allowing your 
students to progress at their own rates. Instead of providing more 
efficient strategies up front, consider posing problems whose solu-
tions would make a student’s building-up strategy inconvenient. 

Shift 3 

Students need to 
make a transition 
from using only 
composed-unit 
strategies to making 
and using multiplica-
tive comparisons as 
well.

Essential 
Understanding 2 

A ratio is a multipli-
cative comparison 
of two quantities, 
or it is a joining of 
two quantities into a 
composed unit.
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For instance, a problem with large numbers could prompt students 
to shift to a different strategy if iterating is too much trouble. A 
good problem to help Dani make the shift to multiplicative compari-
sons might be the following: 

Gear A has 8 teeth, and gear B has 12 teeth. If gear A turns 1,257 
times, how many times will gear B turn?

Simply teaching Dani to multiply 96 rotations by 2/3 might 
have allowed her to solve this problem and others very similar to 
it. However, the fact that Dani went through the tedious process of 
iterating the 3 : 2 ratio so many times could also mean that she was 
not ready to make sense of a multiplication strategy or to form a 
multiplicative comparison. 

Progressing through these shifts in reasoning can be intel-
lectually difficult for students; the transitions take time and ef-
fort. However, the goal is to help students develop the ability to 
reason proportionally and ultimately solve a variety of problems, 
both standard and nonstandard. Unfortunately, early reliance on 
any strategy or algorithm that you offer or impose can allow your 
students to avoid the difficult work involved in developing propor-
tional reasoning. 

Instead, you can pose problems like the one about the two 
gears, with one gear now making 1257 turns, as well as other prob-
lems that encourage the formation of multiplicative comparisons 
in other ways. Consider, for example, the following new problem 
involving the interlocking gears: 

Gear A has 8 teeth, and gear B has 12 teeth. Suppose that you 
needed to replace gear A with a new gear that would make gear B 
turn twice as fast as it did before. How many teeth would the new 
gear A have to have? What if you wanted gear B to turn twice as 
slowly as it did before? How many teeth would the new gear A need 
to have in this case?

Reflect 3.3 invites you to think about what your students might 
gain from solving this problem.

This problem encourages a multiplicative comparison because 
it is helpful to know how much of a rotation gear B makes when 
gear A turns once. When gear A has 8 teeth, gear B turns 8/12 , or 
2/3 , of a rotation. Doubling the number of teeth on gear A to 16 

Teaching Tip 

Encourage students 
to develop their 

own appropriate 
strategies, and only 

judiciously introduce 
strategies such as 
the formation of a 

multiplicative com-
parison or the use of 

multiplication.
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Reflect 3.3

Consider the problem involving a new gear A that makes gear B turn twice as 
fast or twice as slowly as before. How could you use this problem to encourage 
your students to form multiplicative comparisons? 
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teeth will mean that gear B will turn 16/12 , or 4/3 , rotations when 
gear A turns once. Halving the number of teeth on gear A will 
mean that gear B will turn 1/3 of a rotation when gear A turns once.

A related problem that you could pose to students follows: 

Gear A and gear B turn together. Gear A has 6 teeth, and in a period 
of time, gear B turns 1/4 as many revolutions as gear A. How many 
teeth does gear B have? 

Once students can solve these sorts of problems and have started to 
think about one quantity as being twice as great as another, or even 
1/2 or 1/4 as great as another, you can help them connect multiplica-
tive comparisons with composed units, as highlighted in Essential 
Understanding 7. A flexible understanding of ratios and propor-
tions will include the knowledge that a ratio such as “3 turns for 
every 2 turns” means that the number of rotations for gear A is 3/2 
as many as the number of rotations for gear B. 

By giving your students multiple problems at times when 
they are ready to tackle them, you can help them develop an un-
derstanding of building-up strategies, multiplicative comparisons, 
and the connections between them. In addition, by giving students 
opportunities to think about how their ways of solving a prob-
lem might generalize to an entire class of problems, you can help 
them develop a flexible, powerful set of ideas about ratios and 
proportions. 

Once students have had the opportunity to solve proportion 
problems with the strategies discussed above, you might consider 
introducing an algorithm as a standard way to solve the problems. 
If students already possess a strong understanding of proportional 
situations, then they will be poised to make sense of an algorithm 
and compare it meaningfully with their own ways of solving prob-
lems. When it comes to introducing algorithms, the most important 
factor is your judgment about students’ readiness.

Shift 4—From iterating a composed unit to 
creating many equivalent ratios
The final important transition addressed in this chapter is the shift 
from being able to iterate a composed unit, like Dani did, to creat-
ing infinitely many equivalent ratios. It is a mistake to assume that 
students who can iterate or partition a composed unit have a full 
understanding of ratios and rates. Students can be capable of dou-
bling and halving a composed unit without understanding that it is 
possible to multiply a ratio by any real number while maintaining 
the same relationship.

One way to help students make the transition to developing 
equivalent ratios that do not depend on easy multiples is to pose 

Essential 
Understanding 7 

Proportional reason-
ing is complex and 
involves understand-
ing that—
•   equivalent ratios 

can be created 
by iterating and/
or partitioning a 
composed unit;

•   if one quantity in a 
ratio is multiplied 
or divided by a 
particular factor, 
then the other 
quantity must be 
multiplied or di-
vided by the same 
factor to maintain 
the proportional 
relationship; and

•   the two types of 
ratios—composed 
units and multi-
plicative compari-
sons—are related.

Shift 4 

Students need to 
make a transition 
from developing a 
few “easy” equivalent 
ratios to creating a 
set of infinitely many 
equivalent ratios. 
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problems that encourage them to consider equivalent ratios with 
“messy” numbers. For example, consider the Pasta Sauce problem: 

Zadora sells pasta sauce and charges $3.00 for a 7-ounce jar or 
$16.00 for two jars that hold a total of 371/3  ounces. Is buying a 
7-ounce jar a better deal than buying two jars that hold 371/3
ounces? How do you know? 

This type of problem may encourage students to develop unit ra-
tio strategies, but you can also redirect students’ attention back to 
the two original ratios. Do these ratios represent the same cost per 
ounce? If so, how can this be, since none of the numbers is a multi-
ple of any other? You can then lead students in a discussion of what 
types of ratios can be equivalent to others, ultimately encouraging 
the development of the idea of a rate as a set of infinitely many 
equivalent ratios, as reflected in Essential Understanding 8.

Alternatively, you could present your students with a table 
of values such as that in figure 3.4, which shows corresponding 
weights (in pounds) of objects on Earth and on another planet.  You 
might ask, “Given each pair of weights of in the table, how can you 
tell whether every weight B that was determined ‘on another planet’ 
was determined on the same other planet?” You could go on to ask, 
“In any new pair of weights A and B that I come up with, how could 
you tell that weight B was determined on this same planet?”

Weight A on 
Earth (lbs.)

Weight B on 
Another Planet (lbs.)

Object 1 120 45

Object 2 27 10 1/8

Object 3 42 15 3/4

Object 4 16 6

Object 5 1/10 9/240

Fig. 3.4. A table showing corresponding weights A and B of 
objects on Earth and on another planet 

This problem and the Pasta Sauce problem, although very dif-
ferent on the surface, have several things in common. First, both 
emphasize quantities and quantitative relationships. Second, both 
encourage students to explain their reasoning, make generalizations, 
or provide a justification. These are important features of problems 
that help students make the fourth shift in their thinking.

The Pasta Sauce problem encourages students to think about 
whether the cost per ounce of the 7-ounce jar is the same as that of 

Essential 
Understanding 8 

A rate is a set of 
infinitely many 

equivalent ratios.
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the two jars that together hold 371/3 ounces. Both are representa-
tions of the same rate (21/3 ounces per dollar or about 43 cents per 
ounce), and once students have determined this, you can ask them 
to think about what is similar in the two representations. Likewise, 
working with the weight table encourages students to think about 
what is the same for all of the pairs and ultimately express that re-
lationship as B = 3/8  A, A = 8/3  B, or in some other way. By general-
izing from different instantiations of the same relationship, students 
can gain facility in expressing relationships in verbal and algebraic 
descriptions.

You can also emphasize the process of generalizing by asking 
your students to—

• describe what is similar in different representations; 

•  think about whether a pattern that they noticed will extend 
to different types of numbers; 

•  describe situations or cases in which a pattern or relationship 
would not apply; and 

•  express an observed pattern or relationship in general terms. 

The students whose work with the two interlocking gears was 
discussed above also worked with speed situations, including the 
situation involving the clown and the frog described in chapters 1 
and 2. Their teacher asked them to think about what, if anything, 
was the same about the speed problems and the gear problems. The 
following dialogue is an example of the type of conversation that 
can occur when teachers encourage generalizing:

Larissa:  Okay. We always have two things. Either there’s … 
there’s either seconds and centimeters, or rotations 
and … rotations.

Jamie: And it’s gonna be a straight line.

Teacher: Why would it be a straight line?

Larissa: Because all of them are the same relationship.

Jamie:  Because it’s consistent, and consistent also means, 
like, keep going. And linear means like keep –

Timothy: No, it won’t be.

Jamie:  It will, because they both keep going at the same 
pace.

Teacher:  So what does that mean, “keep going at the same 
pace”?  Let’s think back to the gears. What did the 
“same pace” mean for the gears?

Mandy:  Like with the 2/3 gear relationship, Gear B always 
turned 2/3 as much as gear A. Every time you spun 
it, that was consistent.
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Teacher: So why is that like speed?

Larissa:  It would be the same as if the clown walked 2/3 
of a centimeter per second. If his speed was 2/3, 
it’s the same thing as the gears. Every second he 
walks, he goes 2/3 of a centimeter no matter what. 
It is a steady pace.

Timothy:  Both of them have to have the same steady pace, 
and if the pace always remains steady, then it will 
be a line.

Teacher:  Do you think that is just for gears and speed, or 
could you have other things that make a line too?

Larissa: You could have other things—

Timothy:  You could basically have anything that would 
make a line, as long as the pace is steady, like 2/3 
of something per something, like a car driving.

By encouraging the students to think about what made data 
linear for both the speed and gear situations, the teacher shifted the 
classroom focus away from the production of a specific rule to the 
mathematical process of generalizing. The students created a num-
ber of different algebraic representations in various forms, all of 
which made sense to them, given their understanding of the nature 
of speed and gear rotations. These experiences allowed the teacher 
to lead discussions about why different algebraic forms of the same 
relationship are mathematically equivalent.

By the time the preceding conversation occurred, the students 
had already created algebraic rules such as B = 2/3 A. The formaliza-
tion of a relationship or a pattern is only part of a student’s mathe-
matical journey; students also need opportunities to explain why 
their rules makes sense and to think about the origin of algebraic 
rules. 

By focusing on justification—both their own and their peers’—
students can examine their ideas about equivalent ratios, exploring 
why many different ratios can all represent the same relationship. 
These justifying and generalizing actions support the development 
of equivalent ratios and eventually lead to the idea of rate. In ad-
dition, an environment that encourages justification will allow 
students to make judgments about the strategies and explanations 
of their classmates, a process that provides additional learning 
opportunities. 

This chapter’s discussion of students’ learning of proportional 
reasoning has consistently highlighted an important curricular and 
teaching emphasis. The sample problems and the dialogues accom-
panying them have all stressed the need to offer students ratio and 
proportion situations that they can make sense of in the context of 



Challenges: Learning, Teaching, and Assessing 75    

real-world quantities. By supporting their reasoning about quantita-
tive relationships in everyday situations like that involving gear ra-
tios, students can make sense of an idea like “steady rotations” and 
connect that idea with a constant ratio. In addition, the quantitative 
relationships can support the many ways in which students think 
about ratio, including doubling and halving, using other iterating 
and partitioning strategies, building up to equivalent ratios, or us-
ing unit ratio strategies.

However, it is important to be aware that students may still 
be prone to focus solely on number patterns—especially when the 
numbers are presented in tabular form. Once students begin think-
ing about numbers and number patterns instead of the quantities 
that they represent, developing appropriate generalizations about 
ratio and rate may be harder for them—not to mention the even 
greater challenge of providing mathematically sound justifications.

As a teacher, however, you can play an important role in help-
ing your students focus on quantities and the language of quantita-
tive relationships. One way to do so is to incorporate the language 
of quantities into the classroom discussion, as the teacher did in 
the dialogue about the quantitative relationships in the gear and 
speed situations. For instance, if you had a student who examined 
the table in figure 3.2, which shows rotation pairs for gears A and 
B, and then described the pattern as “B divided by A is always 2/3 ,” 
you could ask her to think about whether that would mean that all 
of the data pairs came from the same two gears. Or if you had a 
student who was working in the context of the Pasta Sauce problem 
and described a pattern such as “each time x goes up by 7, y goes 
up by 3,” you could respond by asking him to explain whether that 
would mean that each jar of pasta sauce costs the same amount, or 
if some are more expensive than others. If we encourage students to 
build ratios from relationships between quantities that make sense 
to them, they will have a better chance of forming representations 
that are grounded in their ways of making sense of the world.

The Role of Informal Assessment
One way to assess students’ understanding is by pushing them to 
explain their thinking as they solve problems like the ones dis-
cussed above. Students’ responses to those problems can reveal a 
great deal about their understanding of ratio situations. For in-
stance, Dani’s solution to the Connected Gears problem revealed 
that she was comparing quantities additively. Her response to a 
follow-up problem that called on her to find the number of rota-
tions for gear B when gear A turned 96 times suggested that Dani 
needed to iterate a composed unit repeatedly because she had not 

Teaching Tip 

 Refocus students’ 
attention on quanti-
ties and quantitative 
relationships to em-
phasize the meaning 
of constant ratios. 

pit
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yet reached the stage of forming a multiplicative comparison. Even 
though her solution was correct, Dani’s explanation of her thinking 
revealed important information about her level of understanding—
the kind of information that you might not get from your students 
through a quiz or test problem.

Students might be able to solve a problem correctly, but their 
justifications can show you how they are thinking about the prob-
lem. Consider, for instance, the work of students on a task similar 
to the “head start” problem discussed in chapter 2 (see p. 52). Figure 
3.5 shows the particular problem that the students were consider-
ing—the Clown’s Journey problem. Notice that the –5 in the first 
row of the table means that the character was 5 centimeters behind 
his house after 2 seconds of the journey. In contrast, the data in the 
second row mean that the clown was 20 centimeters in front of his 
house after 12 seconds. 

Clown’s Journey Problem

   The following table represents the clown’s location 
from home, and his time: 

Location (cm) Elapsed Time (sec)

–5 2

20 12

40 20

52.5 25

140 60

 a.  Did the clown walk at the same speed, or did he 
speed up or slow down?  How can you tell?

 b.  Describe the journey that the clown made that 
generated these pairs.

Fig. 3.5. The Clown’s Journey problem

Julie correctly observed that the clown walked 2.5 centimeters 
per second, and that he had started his journey 10 centimeters “be-
hind his house” (that is, 10 centimeters measured from his house 
in the opposite direction from that in which he was traveling). She 
decided that he had walked the same speed throughout his entire 
journey. However, when asked to justify her solution, Julie ran into 
difficulties:

Julie:  I was finding out the gaps between all the num-
bers, like –5 and 20, and 2 and 12, and so on, for 
both sides. And when I got both, I divided 25 by 
10 and 20 by 8 and 12.5 by 5 and 87.5 by 35, and 
it all gave me 2.5, which was his speed. 
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Teacher: How did you know that 2.5 was the clown’s speed?

Julie: Well, I just guessed.

Teacher: How did you make that guess?

Julie:  Because that’s what she, that’s what Larissa did 
yesterday.

When pressed, Julie could not explain why dividing the dif-
ferences of the centimeters by the differences of the seconds made 
sense. Although her written work was correct, Julie’s verbal justi-
fication revealed that she did not necessarily recognize a constant 
rate in the situation; she had only managed to memorize a proce-
dure that she apparently did not connect with her understanding of 
ratios. 

This exchange highlights the importance of asking students to 
explain their thinking and provide justifications for their reasoning. 
The teacher’s follow-up question, “How did you know that 2.5 was 
the clown’s speed?” demonstrates the need to push students beyond 
simply describing what they did to solve the problem. Larissa was 
subsequently able to explain why Julie’s procedure made sense: 
“If he can go 20 centimeters in 8 seconds, to find out how many 
centimeters he can go in 1 second, you have to divide by 8 because 
there’s a total of 8 seconds. And then if you divide 20 by 8 you’ll 
get 2.5, which is … that’s how far he went in 1 second.”

Multiple problem types
Although asking students to explain their reasoning and provide 
justifications can be an excellent way to determine their level of 
understanding, these classroom conversations are unlikely to be 
fruitful unless the tasks presented are genuine problems instead 
of exercises. Figure 3.6 shows an example of an exercise, which 
Reflect 3.4 encourages you to compare and contrast with a genuine 
problem.

 Fill in the missing numbers 
to fi nd Clown’s speed.

 5

 5

20 : 4

? : 1
 4 4

Fig. 3.6. An example of an “exercise”

The task in the figure is an exercise rather than a problem for 
most students for several reasons. First, it does not require students 
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to figure out something new on their own. Instead, it gives them the 
solution method pictorially. Second, although it appears to involve 
students in learning about ratios, it does not require them to create 
ratios to solve the problem. Instead, it merely asks them to follow 
the directions, either dividing 20 by 4 or multiplying 1 by 5, to fill 
in the missing number. In contrast, a genuine ratio problem would 
require students to form a ratio, without giving a recipe for doing so.

The distinction between a problem and an exercise can be a 
useful one for you to consider when making decisions about what 
opportunities to provide for your students. The problems presented 
previously in this chapter, such as the Connected Gears problem, are 
genuine in the sense that they— 

• provide opportunities for students to construct ratios; 
• ask students to tackle a novel situation; and 
• give students room to determine solutions on their own. 

Although it is important to provide students with opportunities 
to strengthen their skills, exercises like the one shown in figure 3.6 
do not focus on ratio skills; they simply require students to practice 
whole-number multiplication or division skills. 

You may want to give your students problems of different types 
to assess their proportional reasoning abilities and help them devel-
op new understanding. The previous discussion of shifts in students’ 
thinking included examples of some types, and the discussion that 
follows adds examples of other types, illustrating five major types of 
proportional reasoning problems in all:

1.  Comparison problems. Problems of this type typically show 
students two ratios and ask them to determine whether the 
first ratio is greater than, less than, or equal to the second. 
Comparison problems can also involve the students in mak-
ing multiple comparisons. Consider, for example, a problem 
that shows a page from a log in which a driver recorded total 
mileage at various intervals on a long trip: 

After 2, 5, 7, and 8 hours of driving, the driver recorded the 
distance as 130 miles, 325 miles, 445 miles, and 510 miles, 
respectively. Was the driver traveling at a constant speed 
throughout the trip, or did he speed up and slow down?

Reflect 3.4

Would the task in figure 3.6 be a genuine problem for your students? Explain. 
If so, how could you change it into an exercise? If not, how could you change it 
into a genuine problem?
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 Several of the problems previously discussed are examples 
of comparison problems, including the problems about 
heartbeats and the weights of objects, and some of the speed 
problems.

2.  Transformation problems. Problems of this type typically 
give a ratio or two equivalent ratios and ask students either 
to change one or more quantities to change the ratio rela-
tionship or to determine how a given change in one or more 
quantities changes the relationship. For instance, consider 
the following speed problem: 

During a morning journey, Clown and Frog walked at the same 
speed, although Clown traveled more distance and took more 
time than Frog. In the afternoon, Clown and Frog took a sec-
ond journey. Clown traveled twice as much distance as he had 
in the morning but in the same amount of time. Frog traveled 
the same distance as he had in the morning but in half the 
time. Did Clown walk faster, slower, or the same speed as Frog 
in the afternoon?

In this problem, students are asked to consider the effect 
that doubling one quantity has on a particular ratio,  
compared with halving the other quantity. 

3.  Mean value problems. Mean value problems present a  
scenario with an underlying structure of the form 

A
x

x
B

=

 and call on students to find the value of x so that the rela-
tionship will hold. An example follows: 

Gear A has 48 teeth, and gear C has 12 teeth.  How many 
teeth should gear B have so that the ratio of revolutions of 
gear A to gear B is the same as the ratio of revolutions from 
gear B to gear C?

4.  Part-part-whole and containment problems. Problems in this 
category express a set in terms of two or more subsets. For 
instance, students might be shown two pictures of lemon-
ade—one made from 8 cups of water and 4 cups of lemon 
concentrate, and another consisting of 10 cups of water and 
6 cups of lemon concentrate—and be asked which lemonade 
mixture will taste stronger. Part-part-whole problems span 
many levels of difficulty depending on their features. For 
example, consider the following two problems from Kaput 
and Maxwell-West (1994, p. 246):
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a.  To make Italian dressing, you need 4 parts vinegar for 9 
parts oil. How much oil do you need for 828 ounces of  
vinegar? 

b.  A large restaurant sets tables by putting 7 pieces of sil-
verware and 4 pieces of china on each placemat. If it used 
392 pieces of silverware in its table settings last night, how 
many pieces of china did it use? 

Reflect 3.5 asks you to consider how your students might 
respond to these problems. 

 Researchers found that the oil and vinegar problem was 
much harder for students than the placemat problem (Kaput 
and Maxwell-West 1994). They conjectured that the place-
mat problem was easier for students because of their per-
ception of “containment” in the situation. The placemats 
held the parts—namely, the silverware and the china—and 
these items were well identified and distinct. The fact that 
the placemat held the two types of items together seemed to 
support a build-up strategy. Even though the oil and vinegar 
problem also had containment, the parts seemed ambigu-
ous, and they lacked easily imagined containers. When 
the students imagined the oil and vinegar as mixed, these 
ingredients seemed to lose their separate identities, and the 
blending appeared to create an additional challenge to keep-
ing the quantities conceptually separate.

5.  Geometric similarity and scaling. Problems of this type, 
which involve similarity, scaling, stretching, or shrinking, 
are the most difficult for students to recognize as propor-
tional (Kaput and Maxwell-West 1994). Figure 3.7 presents 
a problem of this type. One reason that such problems are 
so challenging may be that students cannot usually solve 
them easily by iterating or partitioning a composed unit. 
For example, to solve the problem in the figure, you cannot 
easily cut and paste copies of the smaller rectangle to fit in 
the larger. Instead, the growth from the smaller to the larger 
rectangle results from simultaneously increasing, stretching, 
or pulling both dimensions in a coordinated manner. 

Reflect 3.5 

Which of these two problems do you think your students would find more  
difficult to solve? Why?
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Fig. 3.7. A problem involving similarity

Assessing levels of proportional reasoning
This chapter has discussed some of the shifts that students make 
as they become more adept at reasoning proportionally. It has also 
presented problems designed to help students make these shifts. This 
final section elaborates a few ways to assess the type of reasoning in 
which students may engage—whether they are reasoning additively 
or with ratios, whether they are reasoning with composed units or 
multiplicative comparisons, and whether or not they understand 
unit ratios. 

Assessing whether students are reasoning additively or 
with ratios 
Problems such as the Connected Gears problem provide opportuni-
ties for students to form ratios. However, even when students are 
able to construct ratios, they may revert to additive reasoning if the 
differences between the quantities given in a problem are relatively 
small. You can use problems such as the following to identify this 
tendency in your students: 

Suppose that you have two interlocking gears—a big gear and a 
small gear. When the small gear turns 12 times, the big gear turns 9 
times. If the small gear turns 13 times, how many times will the big 
gear turn?

This problem is a missing-value problem in which the differences 
between the quantities are small. A possible response indicating 
additive reasoning is that the big gear will turn 10 times. If your 
students are working physically with gears, you can invite them to 
test their hypothesis by turning the gears and counting the rota-
tions. Once they discover that the big gear does not quite turn 10 
times, you can ask them to think about why that might be the case. 
Testing hypotheses in this way gives students opportunities to 

The rectangle on the left is 9 centimeters high and 15 centimeters The rectangle on the left is 9 centimeters high and 15 centimeters 
long. The rectangle on the right is the same shape as the one on the long. The rectangle on the right is the same shape as the one on the 
left, but bigger. If it is 24 centimeters high, how long is it?left, but bigger. If it is 24 centimeters high, how long is it?

9 cm9 cm

15 cm15 cm

24 cm24 cm

? cm ? cm 
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discover that additive comparisons do not work in situations of this 
sort, potentially prompting them to adopt a new approach.

Consider a different problem—one that invites students to re-
spond explicitly to the additive reasoning of a hypothetical student:

If Sara can read 12 pages in 15 minutes, then how long would she 
take to read 13 pages? Suppose that one student said that Sara 
would take 16 minutes to read 13 pages because “you just add 1 on 
each time.” Do you agree or disagree with the student? If you think 
that the student’s strategy works, show how, and justify your answer. 
If you don’t think that the strategy works, explain why not.

A problem like this can elicit evidence of your students’  
tendency to use additive reasoning even if other problems do not, 
because it poses a common way of thinking that students must 
either accept or reject. By allowing students to engage in a group 
discussion over whether the hypothetical student’s approach makes 
sense, you can judge how robust their reasoning with ratios is and 
how strong their inclination is to use additive comparisons. 

Presenting ideas as originating with hypothetical students 
can be a valuable way of eliciting students’ thinking. Because the 
proposed idea purportedly comes from another student rather than 
from you—the teacher—the idea will not carry your authority, and 
your students will be less likely to agree with it simply because they 
want to agree with you. You can pose both correct and incorrect 
strategies as the ideas of hypothetical students.

Assessing students’ abilities to reason with composed units 
or multiplicative comparisons 
A good way to prompt students to form multiplicative comparisons is 
to have them explore tables of data or solve prediction problems with 
large numbers, such as the gear problems on page 70. Another way 
to assess a student’s thinking is to present a problem that calls on 
him or her to draw and use a picture in the explanation of a solution. 
Consider the following problem:

Frog walks 5 centimeters in 4 seconds. Clown walks 15 centimeters 
in 12 seconds. Does one character walk faster than the other, or are 
the two characters walking equally fast? Draw a picture to explain 
your answer.  

Larissa, one student who was solving this problem, created the 
drawing in figure 3.8. The top line represents Frog’s journey: the 
numbers on the line represent the centimeters, and the numbers 
in the boxes represent the seconds. Frog’s journey continued for 4 
seconds, in which time he traveled 5 centimeters. Clown’s journey, 
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represented by the bottom number line, continued for 12 seconds, 
in which time he traveled 15 centimeters.

Larissa concluded that the characters walked the same speed 
because she could think of Clown’s journey as Frog’s journey 
repeated:

When they’re at 5, both of them are at 4.0 seconds. But since the 
frog stops, he’s finished…. But the clown keeps going, and from 0 to
5, it jumped 4 seconds…. From 5 to 10, it also jumped 5 centimeters 
and 4 seconds. And from 10 to 15, it jumped 5 centimeters and also 
4, um, seconds. So the proportion stays the same throughout the 
thing, even though the frog stopped.

Larissa’s explanation, in combination with her drawing, dem-
onstrates that she is thinking of a composed unit (5 cm : 4 sec). This 
response could be an indication that she needs to solve more prob-
lems like the ones shown earlier in the chapter to encourage the 
formation and use of multiplicative comparisons, in addition to the 
use of composed units. 

Assessing students’ understanding of unit ratios 
Essential Understanding 9 states that several informal ways of 
reasoning can be generalized into algorithms for solving propor-
tion problems. For students to grasp this essential understanding, 
it is critically important for them to develop a deep understanding 
of unit ratios, as chapter 1 suggests. They can then use this un-
derstanding to develop an alternative to the cross-multiplication 
algorithm—a different algorithm that is generalizable and grounded 
in sense making. 

Furthermore, a component of understanding unit ratios is be-
ing able to reinterpret ratios as quotients, as indicated in Essential 
Understanding 5. To help you assess your students’ understanding 
of the important relationship between unit ratios and division, you 
can give them problems that invite them to draw pictures, such as 
the following: 

Essential 
Understanding 9 

Several ways of 
reasoning, all 
grounded in sense 
making, can be 
generalized into 
algorithms for 
solving proportion 
problems.

Essential 
Understanding 5 

Ratios can be 
meaningfully 
reinterpreted as 
quotients.

Fig. 3.8. A student’s picture showing that Frog and Clown traveled at 
the same speed (from Ellis [2007], p. 219)
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Suppose that 15 hoagies are to be shared to feed 12 people. To 
decide how to share the hoagies, a student divides 12 by 15 to get 
0.8 people per hoagie. Does this student’s work give a good way to 
share the hoagies? Draw a picture to support your answer.

A different way of using pictures to help you assess this under-
standing is to ask your students to make sense of given pictures to 
solve problems. Consider the problem in figure 3.9, which includes 
a picture.

Reading Problem 

16 pages

4 min

Kai can read 16 pages in 4 minutes. Consider the picture of his 
reading above. How much did he read in the circled section, and 
how much time did it take him?

Fig. 3.9. A problem designed to elicit students’ understanding of  
division and unit ratios

Students who tackle the problem without recognizing a strong 
connection between division and partitioning, or without fully 
understanding unit ratios, may incorrectly divide the number of 
pages (16) by the number of minutes (4) instead of by the number 
of partitioned groups (8) yielding an incorrect response of 4 pages 
in 1 minute. If this happens, you could follow up by asking students 
to show their answer in the drawing and to fill in the number of 
minutes and pages that go with the other tick marks in the diagram. 
By doing so, the students are likely to notice that something is not 
right. For example, if a student treats each segment as representing 
4 pages in 1 minute, and labels the tick marks from left to right, he 
or she will reach 16 pages in 4 minutes much too soon—just half-
way through the picture. If students are still stuck, you might inter-
pret their confusion as a sign that you need to take a step back and 
help them develop their understanding of division and partitioning 
by building on their natural halving strategies.

Conclusion
Informal and formal assessment strategies that ask students to draw 
their own pictures, explain their reasoning, provide justifications 
for their answers, and interpret other people’s pictures, strategies, 



Challenges: Learning, Teaching, and Assessing 85    

and solutions can provide new insight into students’ levels of pro-
portional reasoning. Consider providing students with a variety of 
problems to assess their understanding of the same idea in differ-
ent ways. As this chapter has shown, students may be able to solve 
problems correctly, yet not really understand the situations at  
hand or the solutions that they have given. Asking them to provide 
justifications, drawings, or solutions to different problems can reveal 
that their understanding is not as strong as their performances 
initially seem to suggest. Recall Bonita’s work from chapter 1. 
Although Bonita could use the cross-multiplication algorithm to 
solve a proportion problem correctly, her subsequent work revealed 
a number of significant gaps in her understanding. 

Be wary of overestimating students’ understanding on the basis 
of their ability to use an algorithm correctly. A better way to gauge 
students’ proportional reasoning is to provide problems that rep-
resent a variety of types and go beyond the typical missing-value 
problems. By posing problems of assorted types and forms, you will 
be able to determine with greater accuracy how your students are 
reasoning.
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How do you refute the claim that all ratios are fractions? How are ratios related to 
fractions? How does ratio reasoning differ from other types of reasoning? When it 
is appropriate to reason proportionally?

How much do you know … and how much do you need to know? 

Helping your middle school students develop a robust understanding of ratios, 
proportions, and proportional reasoning requires that you understand this mathe-
matics deeply. But what does that mean?

This book focuses on essential knowledge for teachers about ratios, proportions, 
and proportional reasoning. It is organized around one big idea, supported by 
multiple smaller, interconnected ideas—essential understandings. Taking you 
beyond a simple introduction to ratios, proportions, and proportional reasoning, the 
book will broaden and deepen your mathematical understanding of one of the most 
challenging topics for students—and teachers. It will help you engage your students, 
anticipate their perplexities, avoid pitfalls, and dispel misconceptions. You will also 
learn to develop appropriate tasks, techniques, and tools for assessing students’ 
understanding of the topic. 

Focus on the ideas that you need to understand thoroughly to teach confidently.

Move beyond the mathematics you expect your students to 
learn. Students who fail to get a solid grounding in pivotal 
concepts struggle in subsequent work in mathematics and related 
disciplines. By bringing a deeper understanding to your teaching, you can help 
students who don’t get it the first time by presenting the mathematics in multiple ways.

The Essential Understanding Series addresses topics in school mathematics that are 
critical to the mathematical development of students but are often difficult to teach. 
Each book in the series gives an overview of the topic, highlights the differences between 
what teachers and students need to know, examines the big ideas and related essential 
understandings, reconsiders the ideas presented in light of connections with other 
mathematical ideas, and includes questions for readers’ reflection.a
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